99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

MATH4063代做、代寫C++編程設計

時間:2023-11-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



1 MATH**3
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
AUTUMN SEMESTER 2022-2023
MATH**3 - SCIENTIFIC COMPUTING AND C++
Coursework 1 - Released 30th October 2023, 4pm
Your work should be submitted electronically via the MATH**3 Moodle page by 12noon on Monday 20th
November (unless you have arranged an extension). Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct). Submissions up to five working
days late will be marked, but subject to a penalty of 5% of the maximum mark per working day.
The marks for each question are given by means of a figure enclosed by square brackets, eg [20]. There are
a total of 100 marks available for the coursework and it contributes 45% to the module. The marking rubric
available on Moodle will be applied to each full question to further break down this mark.
You are free to name the functions you write as you wish, but bear in mind these names should be meaningful.
Functions should be grouped together in .cpp files and accessed in other files using correspondingly named
.hpp files.
All calculations should be done in double precision.
A single zip file containing your full solution should be submitted on Moodle. This zip file should contain three
folders called main, source and include, with the following files in them:
main:
• q1d.cpp
• q2c.cpp
• q3c.cpp
• q4b.cpp
source:
• vector.cpp
• dense_matrix.cpp
• csr_matrix.cpp
• linear_algebra.cpp
• finite_volume.cpp
include:
• vector.hpp
• dense_matrix.hpp
• csr_matrix.hpp
• linear_algebra.hpp
• finite_volume.hpp
Prior to starting the coursework, please download the CW1_code.zip from Moodle and extract the files. More
information about the contents of the files included in this zip file is given in the questions below.
Hint: When using a C++ struct with header files, the whole struct needs to be defined fully in the header file,
and the header file included in the corresponding .cpp file. Include guards should also be used.
MATH**3 Turn Over
2 MATH**3
In this coursework you will build a 2D finite volume solver for the following PDE boundary value problem
−𝛥w**6; + ∇ ⋅ (bw**6;) = 𝑓 (w**9;, 𝑦) ∈ 𝛺, (1)
w**6; = 𝑔, (w**9;, 𝑦) ∈ 𝜕𝛺, (2)
where 𝑓 ∶ 𝛺 → **7;, 𝑔 ∶ 𝜕𝛺 → **7; and b ∶ 𝛺 → **7;2
.
In order to solve this problem, you will first define a sparse matrix structure, then write functions to apply
the GMRES linear algebra solver and finally build and solve the linear system arising from the finite volume
approximation of (1)-(2).
1. Matrices arising from the discretisation of partial differential equations using, for example, finite volume
methods, are generally sparse in the sense that they have many more zero entries than nonzero ones.
We would like to avoid storing the zero entries and only store the nonzero ones.
A commonly employed sparse matrix storage format is the Compressed Sparse Row (CSR) format. Here,
the nonzero entries of an 𝑛 × 𝑛 matrix are stored in a vector matrix_entries, the vector column_no gives
the column position of the corresponding entries in matrix_entries, while the vector row_start of length
𝑛+1 is the list of indices which indicates where each row starts in matrix_entries. For example, consider
the following:
𝐴 =




8 0 0 2
0 3 1 0
0 0 4 0
6 0 0 7





matrix_entries = (8 2 3 1 4 6 7)
column_no = (0 3 1 2 2 0 3)
row_start = (0 2 4 5 7)
Note, in the above, C++ indexing has been assumed, i.e, indices begin at 0.
(a) In csr_matrix.hpp, define a C++ struct called csr_matrix to store a matrix in CSR format. In
addition to matrix_entries, column_no and row_start, you should store the number of rows of the
matrix explicitly.
(b) In csr_matrix.cpp, write a C++ function that will set up the matrix 𝐴 from above in CSR format.
Remember, if you are using dynamically allocated memory, then you should also have corresponding
functions that will deallocate the memory you have set up.
(c) In csr_matrix.cpp, write a C++ function that takes as input a matrix 𝐴 stored in CSR format and a
vector x and computes the product 𝐴x. The prototype for your function should be:
void MultiplyMatrixVector ( csr_matrix & matrix ,double* vector ,
double* productVector )
Hence, the input vector and the output productVector should be pointers to dynamically allocated
arrays. In particular, it should be assumed that productVector has been preallocated to the correct
size already.
(d) By setting a vector x = (4, −1, 3, 6)⊤, write a test program in q1d.cpp to compute and print to the
screen the product 𝐴x, where 𝐴 is the matrix given above.
[20 marks]
MATH**3
3 MATH**3
2. Suppose we wish to find x ∈ **7;𝑛
such that
𝐴x = b, (3)
where 𝐴 is an 𝑛 × 𝑛 matrix and b ∈ **7;𝑛
.
One algorithm for solving this problem is the (restarted) Generalised Minimal RESidual (GMRES) algorithm.
The method is too complicated to explain here, but works to quickly find approximations x𝑘 = x0 + y𝑘
where y𝑘 ∈ 𝒦𝑘 ∶= Span{𝐴q0
, 𝐴2q0 … 𝐴𝑘q0
} for 𝑘 = 1, 2, …. y𝑘 is chosen to minimise the residual
‖b − 𝐴x𝑘‖2
.
Here x0
is some initial guess vector and q0
is the normed initial residual
q0 =
b − 𝐴x0
‖b − 𝐴x0‖2
.
𝒦𝑘 is called a Krylov subspace of 𝐴.
The algorithm stops when ‖b − 𝐴x𝑘‖2 < tol for some termination tolerance tol. As the method becomes
very memory inefficient when 𝑘 is large, the method is restarted every so often and x𝑘 reset to be x0
.
An incomplete GMRES algorithm function PerformGMRESRestarted() has been written in
linear_algebra.cpp.
A key component of the GMRES algorithm is the Arnoldi iteration that seeks to find an orthonormal basis
of 𝒦𝑘. At the 𝑘th step of the iteration, the Arnoldi method constructs the following matrix decomposition
of 𝐴:
𝐴𝑄𝑘 = 𝑄𝑘+1𝐻̃
𝑘,
where the columns of 𝑄𝑘 (𝑄𝑘+1) contain the orthonormal basis of 𝒦𝑘 (𝒦𝑘+1, resp.) and 𝐻̃
𝑘 is a (𝑘+1)× 𝑘
upper Hessenberg matrix. That is, a matrix that is nearly upper triangular but has non-zero components
on the first subdiagonal.
The 𝑘th step of the Arnoldi algorithm is:
Algorithm 1 One step of the Arnoldi Iteration.
Require: 𝑘 > 0, 𝐴, 𝑄𝑘:
1: Let q𝑖 be the 𝑖th column of 𝑄𝑘.
2: Let h = {ℎ𝑖
}
𝑘+1
𝑖=1 be a vector of length 𝑘 + 1.
3: Compute q𝑘+1 = 𝐴q𝑘
4: for 𝑖 = 1, … , 𝑘 do
5: ℎ𝑖 = q𝑘+1 ⋅ q𝑖
.
6: q𝑘+1 = q𝑘+1 − ℎ𝑖q𝑖
.
7: end for
8: ℎ𝑘+1 = ‖q𝑘+1‖2
.
9: q𝑘+1 = q𝑘+1/ℎ𝑘.
10: 𝑄𝑘+1 = [𝑄𝑘, q𝑘+1].
11: return 𝑄𝑘+1 and h.
(a) In linear_algebra.cpp, write a C++ function which implements one step of the Arnoldi iteration
method defined above.
The function should have the following prototype
void PerformArnoldiIteration ( csr_matrix & matrix ,
dense_matrix & krylov_matrix , int k, double* hessenberg )
MATH**3 Turn Over
4 MATH**3
Here, matrix is 𝐴, k is the step of the iteration to perform, krylov_matrix is the matrix containing
the orthonormal basis, where each row is a basis vector. Upon entry, krylov_matrix should have 𝑘
rows and upon exit it should contain 𝑘 + 1 rows, with the new basis vector in the last row.
Finally, upon exit, hessenberg should contain h, which is the final column of 𝐻̃
𝑘. You may assume that
hessenberg has been preallocated to be of length 𝑘+1 before the call to PerformArnoldiIteration.
Your function should make use, where possible, of prewritten functions defined in dense_matrix.cpp
and vector.cpp. Your code should also make use of the matrix multiplication function from Q1.
Once you have written PerformArnoldiIteration() the GMRES function should function as intended.
Note: Storage of the basis functions in the rows of krylov_matrix, rather than in the columns,
improves efficiency of the code.
(b) In csr_matrix.cpp, write a C++ function that will read from a file a matrix already stored in CSR
format and a vector. You may assume the file structures are as in matrix1.dat and vector1.dat on
Moodle and you may use these data files to test your function.
(c) Write a test program in file q2c.cpp that will read in the matrix 𝐴 from matrix2.dat and the vector
x from vector2.dat, compute b = 𝐴x, then use PerformGMRESRestarted() with the default input
arguments to find an approximation x̂to x. At the end of the calculation, print to the screen the error
‖x − ̂ x‖2
.
[30 marks]
3. The file mesh.hpp contains a struct that defines a mesh data structure mesh for a general mesh comprising
axis-aligned rectangular cells. In particular, each cell in the mesh has an additional struct called
cell_information that contains, among other things, information about the cell neighbours. Familiarise
yourself with these data structures by looking in mesh.hpp.
mesh.cpp contains two functions that will generate meshes, they are:
• ConstructRectangularMesh() - this constructs a mesh on the rectangular domain 𝛺𝑅 = [𝑎, 𝑏] ×
[𝑐, 𝑑].
• ConstructLShapedMesh() - this constructs a mesh on the L-shaped domain 𝛺𝐿 = 𝛺𝑅\𝛺𝐶, where
𝛺𝐶 = [(𝑎 + 𝑏)/2, 𝑏] × [(𝑐 + 𝑑)/2, 𝑑].
(a) In finite_volume.cpp, write a C++ function that will create the storage for a matrix 𝐴 in CSR format
and a RHS vector F required for a cell-centred finite volume method for solving (1)-(2). You should
follow the procedure outlined in the Unit 6 lecture notes. As one of the inputs, your function should
take in a variable of type mesh.
(b) In csr_matrix.cpp, write a C++ function that will output to the screen a matrix stored in CSR format
in the same style as in matrix1.dat.
(c) In Q3c.cpp, write a program that will ask the user to supply the number of cells in each coordinate
direction of a rectangular mesh, sets up the mesh using ConstructRectangularMesh() then calls the
function from part (a) to set up the corresponding matrix and finally prints it to the screen using the
function from part (b).
[30 marks]
MATH**3
5 MATH**3
4. (a) In finite_volume.cpp, write a function that takes in a mesh, uses the function from Q3(a) to construct
𝐴 and F, then populates it with the correct entries to solve problem (1)-(2) using the cell-centred finite
volume method, as outlined in the Unit 6 notes. The function should also take as input the functions
𝑓(w**9;, 𝑦), b(w**9;, 𝑦) and the Dirichlet boundary function 𝑔(w**9;, 𝑦).
(b) In Q4b.cpp, write a main program to ask the user to select from the following problems and supply
the number of cells in each coordinate direction.
1. • Rectangular Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = 0.
2. • L-shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 8𝜋2
cos(2𝜋w**9;) cos(2𝜋𝑦);
• 𝑔(w**9;, 𝑦) = cos(2𝜋w**9;) cos(2𝜋𝑦);
• b = 0.
3. • Rectangular Mesh - 𝑎 = −1, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 1;
• 𝑔(w**9;, 𝑦) = 0;
• b = (10, 10)⊤.
4. • L-Shaped Mesh - 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 and 𝑑 = 1;
• 𝑓(w**9;, 𝑦) = 0;

𝑔(w**9;, 𝑦) = {
1, w**9; = 0, 0.25 < 𝑦 < 0.75,
0, otherwise;
• b = (
50𝑦
√w**9;2+𝑦2
,
−50w**9;
√w**9;2+𝑦2
)

.
The code should then set up the linear system arising from the finite volume discretisation and solve
the system
𝐴uℎ = F
using PerformGMRESRestarted().
Finally, print to the screen the maximum value of uℎ.
Hint: Once you have computed uℎ you can output it to together with the mesh to a file using
OutputSolution() in mesh.cpp. plot_solution.py can then be used to plot the solution in Python.
Note, if you are unable to get the iterative solver from Q2 working, then you may create the finite volume
matrix 𝐴 as if it were a dense matrix (i.e store all the zero entries) and use the function
PerformGaussianElimination() from dense_matrix.cpp to solve the system of equations. This will incur
a small penalty. Note, an illustration of the use of PerformGaussianElimination() can be found in the
main program inside gaussian_elimination_test.cpp.
[20 marks]
MATH**3 End

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP9021代做、代寫Python程序語言
  • 下一篇:代寫CSE 30程序、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美人牲a欧美精品| 在线视频综合导航| 亚洲色图一区二区| 久久久久9999亚洲精品| 日韩欧美在线观看一区二区三区| 久草中文综合在线| 奇米影视在线99精品| 日韩激情视频在线观看| 一区二区视频在线看| 亚洲综合免费观看高清完整版| 国产精品女主播在线观看| 欧美经典一区二区| 亚洲人成小说网站色在线| 亚洲色大成网站www久久九九| 中文字幕一区二区三区乱码在线| 精品国产乱码久久久久久夜甘婷婷 | 国产在线不卡一卡二卡三卡四卡| 琪琪一区二区三区| 国产成人精品一区二区三区网站观看| 另类成人小视频在线| 岛国一区二区在线观看| 欧美影视一区在线| 精品91自产拍在线观看一区| 国产精品美女久久久久久久| 一区免费观看视频| 毛片av一区二区| 韩国理伦片一区二区三区在线播放 | 亚洲欧美日韩一区二区 | 亚洲国产中文字幕在线视频综合| 亚洲黄色av一区| 国产一区二区三区香蕉| 色偷偷久久一区二区三区| 51久久夜色精品国产麻豆| 国产精品女同一区二区三区| 手机精品视频在线观看| 东方欧美亚洲色图在线| 欧美日韩国产不卡| 亚洲另类色综合网站| 欧美激情在线看| 午夜免费欧美电影| 国产成人福利片| 国产精品一区二区91| 欧洲精品一区二区| 亚洲欧美一区二区三区国产精品| 久久超碰97中文字幕| 777色狠狠一区二区三区| 亚洲人成精品久久久久久| 亚洲免费观看高清在线观看| 成人综合在线视频| 国产人成亚洲第一网站在线播放| 日日摸夜夜添夜夜添国产精品| 亚洲一区二区三区四区在线观看| 紧缚奴在线一区二区三区| 成人精品电影在线观看| 国产精品国产三级国产普通话三级| 美女网站一区二区| 久久婷婷成人综合色| 国产麻豆精品95视频| 精品电影一区二区三区| 国产精品1区二区.| 94-欧美-setu| 亚洲国产一区二区在线播放| 欧美优质美女网站| 亚洲亚洲精品在线观看| 欧美日韩在线电影| 精品一区二区三区在线观看国产 | 日韩激情在线观看| 一区二区三区在线影院| 欧美色综合影院| 国产精品一区二区男女羞羞无遮挡 | 成人av动漫网站| 亚洲综合自拍偷拍| 欧美另类videos死尸| 麻豆精品在线看| 中文字幕av一区二区三区| 在线观看视频一区二区欧美日韩| 樱花草国产18久久久久| 91精品中文字幕一区二区三区| heyzo一本久久综合| 麻豆成人91精品二区三区| ●精品国产综合乱码久久久久| 日韩精品一区二区三区在线| 欧美亚洲国产一区二区三区 | 激情亚洲综合在线| 亚洲同性同志一二三专区| 欧美日韩精品一区二区在线播放| 日日夜夜一区二区| 欧美韩国日本不卡| 91.com视频| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 久久精品国产一区二区三区免费看| 国产精品萝li| 精品入口麻豆88视频| 欧美日韩aaa| 99精品国产一区二区三区不卡| 丝袜亚洲另类欧美综合| 精品国产一区二区三区久久久蜜月 | av一区二区三区四区| 精品综合久久久久久8888| 日韩欧美一级片| 欧美日韩一区二区三区在线看 | 欧美日韩一二三区| 91麻豆文化传媒在线观看| 国产中文字幕精品| 成人中文字幕电影| 国产乱码精品1区2区3区| 日韩av一级片| 天天操天天干天天综合网| 一区二区三区四区不卡视频| 亚洲欧美日韩一区二区| 成人欧美一区二区三区小说 | 欧洲日韩一区二区三区| 欧美亚洲综合另类| 欧美三级视频在线观看| 欧美美女一区二区| 欧美一区二区三区在线观看视频| 日韩一区二区三区视频| 精品福利一二区| 91麻豆精品国产91久久久久| 久久精品一区二区三区av| 欧美韩国日本综合| 亚洲高清在线视频| 亚洲免费在线看| 国产福利精品一区| av电影在线观看不卡| 日本高清不卡aⅴ免费网站| 91精品国产综合久久国产大片| 久久久亚洲欧洲日产国码αv| 欧美国产精品一区二区三区| 亚洲欧美在线视频| 日本美女一区二区三区视频| 国产原创一区二区三区| 色婷婷精品大在线视频| 久久伊人蜜桃av一区二区| 国产精品视频麻豆| 青草av.久久免费一区| 粉嫩aⅴ一区二区三区四区| 欧美怡红院视频| 中文字幕乱码亚洲精品一区| 婷婷开心激情综合| 午夜视频在线观看一区| 国精产品一区一区三区mba桃花| 91色.com| 国产欧美日韩在线视频| 五月天激情小说综合| 国产在线精品一区二区夜色 | 国产色产综合产在线视频| 亚洲午夜精品一区二区三区他趣| 亚洲天堂成人网| 91久久精品日日躁夜夜躁欧美| 国产亚洲制服色| 精品影视av免费| 欧美一级高清片| 国产一区中文字幕| 中文字幕免费观看一区| 成人性生交大片| 国产精品久久久久影视| 91美女福利视频| 一个色综合网站| 91精品国产综合久久精品麻豆| 亚洲1区2区3区4区| 国产一区二区不卡| 久久久久久久久97黄色工厂| 激情都市一区二区| 51精品国自产在线| av网站免费线看精品| 亚洲国产欧美在线| 欧美不卡一区二区| 日本伊人色综合网| 综合激情成人伊人| 色婷婷av一区二区三区大白胸| 亚洲精品日日夜夜| 久久精品视频网| 97久久超碰精品国产| 亚洲成av人片一区二区| 一区在线观看视频| 精品国产乱码久久久久久1区2区| caoporen国产精品视频| 美女视频黄 久久| 日本人妖一区二区| 亚洲欧洲性图库| 精品国产麻豆免费人成网站| 日本道精品一区二区三区| 成人av资源站| 久热成人在线视频| 亚洲h精品动漫在线观看| 国产精品伦理一区二区| 4438成人网| 在线观看中文字幕不卡| 成人动漫精品一区二区| 国产一区三区三区| 麻豆91在线观看| 午夜影院久久久| 亚洲影院免费观看| 亚洲欧美日本韩国| 欧美国产精品专区| 国产欧美日韩另类一区| 久久综合九色综合97_久久久| 在线视频观看一区| 91在线视频免费91|