99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91黄色小视频| 91成人免费电影| 国产精品一级片在线观看| 国产麻豆午夜三级精品| 高清在线观看日韩| 91亚洲精品久久久蜜桃网站| 日本高清免费不卡视频| 亚洲最新视频在线播放| 麻豆一区二区在线| 色先锋aa成人| 精品国产一区a| 国产欧美一区二区在线| 午夜电影一区二区三区| 成人黄色大片在线观看| 91精品国产麻豆国产自产在线| 久久久综合激的五月天| 亚洲一区二区三区在线| 成人永久看片免费视频天堂| 日韩限制级电影在线观看| 欧美激情一区二区三区不卡 | 欧美电影在哪看比较好| 国产精品美女久久久久aⅴ | 色噜噜偷拍精品综合在线| 日日欢夜夜爽一区| 91国产免费看| 国产精品一区二区果冻传媒| 午夜久久久久久| 亚洲丝袜制服诱惑| 91小视频在线| 国产综合一区二区| 日韩免费观看高清完整版| 亚欧色一区w666天堂| 一本色道亚洲精品aⅴ| 狠狠色狠狠色合久久伊人| 夜夜操天天操亚洲| 国产精品丝袜久久久久久app| 欧美videos中文字幕| 久久精品国产久精国产| 欧美www视频| 欧美日韩精品电影| 午夜欧美一区二区三区在线播放 | 日韩欧美在线123| 欧美精品一二三| 欧美视频一区二区三区| 亚洲国产美女搞黄色| 欧洲亚洲精品在线| 亚洲丶国产丶欧美一区二区三区| 国产欧美va欧美不卡在线| 精品99999| 久久免费精品国产久精品久久久久| 日韩午夜小视频| 亚洲精品一区二区三区精华液| 在线成人小视频| 91精品国产综合久久精品性色| 久久激情五月激情| 久久aⅴ国产欧美74aaa| 久久99这里只有精品| 韩国视频一区二区| 国产精品1区2区3区在线观看| 美国十次了思思久久精品导航| 免费xxxx性欧美18vr| 欧美韩国一区二区| 中文字幕欧美日本乱码一线二线| 中文字幕av免费专区久久| 日韩毛片高清在线播放| 亚洲成人av中文| 久久91精品国产91久久小草| 亚洲免费观看高清在线观看| 91精品国产综合久久久久久久 | 一区二区中文字幕在线| 欧美日韩一区二区在线观看 | 国产乱对白刺激视频不卡| 豆国产96在线|亚洲| 91影院在线观看| 欧美日韩日本视频| 精品国产区一区| 亚洲欧美成人一区二区三区| 爽好多水快深点欧美视频| 国产成人精品亚洲日本在线桃色 | 五月婷婷激情综合网| 日本欧美加勒比视频| 中文字幕欧美三区| 一区二区久久久久| 久久99久久99小草精品免视看| 床上的激情91.| 欧美日本一道本| 国产三级一区二区| 精品国产一区二区三区av性色| 欧美激情中文字幕| 日韩精品成人一区二区三区 | 久久久精品影视| 亚洲精品国产a| 成人免费一区二区三区视频 | 亚洲在线免费播放| 国产精品自在在线| 欧美少妇xxx| 国产精品青草综合久久久久99| 日本不卡一区二区三区高清视频| 成人免费看黄yyy456| 精品欧美黑人一区二区三区| 亚洲成年人影院| jizzjizzjizz欧美| 成人av先锋影音| 欧美电影精品一区二区| 亚洲国产乱码最新视频| 成人免费高清在线观看| 26uuu色噜噜精品一区二区| 欧美电影免费观看高清完整版在线 | 亚洲一区在线视频| 国产91在线观看| 精品国产青草久久久久福利| 日韩主播视频在线| 99国产一区二区三精品乱码| 99久久婷婷国产精品综合| 日韩欧美精品在线视频| 亚洲综合色自拍一区| 色综合网色综合| 欧美在线免费视屏| 国产视频视频一区| 国产综合色产在线精品| 日韩欧美久久一区| 国产资源在线一区| 国产亚洲视频系列| 国产成人三级在线观看| 中文字幕不卡在线| 91在线高清观看| 亚洲第一成年网| 日韩欧美激情四射| 国产精品乡下勾搭老头1| 日本一二三不卡| 91久久精品一区二区三| 午夜精品视频一区| 日韩午夜小视频| 国产成人福利片| 亚洲日本va午夜在线影院| 91色porny蝌蚪| 亚洲国产成人va在线观看天堂| 欧美久久一二三四区| 国内久久精品视频| 亚洲欧洲性图库| 欧美日韩一区二区欧美激情| 日韩精品欧美精品| 国产午夜久久久久| 在线精品视频小说1| 免费国产亚洲视频| 中文字幕免费观看一区| 在线精品观看国产| 久久国产精品区| 亚洲少妇最新在线视频| 91精品欧美一区二区三区综合在| 精品一区二区国语对白| 中文字幕一区二区三区在线不卡 | 高清beeg欧美| 一区二区三区国产精华| 3d动漫精品啪啪一区二区竹菊| 免费亚洲电影在线| 亚洲欧美综合色| 日韩欧美国产一区二区在线播放 | 国产精品护士白丝一区av| 天堂影院一区二区| 日韩视频在线永久播放| 丁香激情综合国产| 污片在线观看一区二区| 国产视频视频一区| 67194成人在线观看| 9人人澡人人爽人人精品| 日韩vs国产vs欧美| 国产精品对白交换视频| 精品国产人成亚洲区| 91国产免费观看| 高清免费成人av| 激情综合网激情| 日本中文字幕不卡| 亚洲成a人v欧美综合天堂下载 | 色综合久久综合网97色综合| 国产美女主播视频一区| 午夜精品久久一牛影视| 亚洲图片你懂的| 欧美韩日一区二区三区| 精品国产乱码久久久久久蜜臀| 欧美日韩一区在线观看| 色综合久久综合中文综合网| 成人做爰69片免费看网站| 狠狠网亚洲精品| 精品一区二区在线播放| 视频一区欧美日韩| 亚洲午夜久久久久久久久电影院| 中文字幕一区在线观看| 国产精品你懂的在线欣赏| 久久香蕉国产线看观看99| 久久综合久久综合久久| 精品久久久久99| 2019国产精品| 精品国产乱码久久久久久久久 | 国产v日产∨综合v精品视频| 免费成人结看片| 极品少妇一区二区三区精品视频| 久久精品国产一区二区三区免费看| 秋霞电影一区二区| 麻豆精品新av中文字幕|