99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产精品亚洲综合一区在线观看| 亚洲欧美日韩中文视频| 国产精品观看| 美女视频黄免费的久久| 亚洲一区二区精品视频| 亚洲电影免费观看高清| 国产一区二区欧美| 欧美午夜三级| 欧美日韩中文字幕| 欧美aaa级| 老牛影视一区二区三区| 欧美一区二区三区免费看| 一区二区国产日产| 日韩视频免费| 亚洲三级电影全部在线观看高清| 国产日韩精品在线观看| 欧美性理论片在线观看片免费| 欧美高清在线一区| 美日韩精品免费观看视频| 久久国产一区二区三区| 欧美一级淫片播放口| 亚洲专区在线视频| 亚洲专区国产精品| 亚洲影院免费| 午夜精品一区二区三区在线| 亚洲男女自偷自拍| 午夜精品三级视频福利| 亚洲欧美在线另类| 欧美一区二区三区视频免费播放| 欧美一区二区观看视频| 久久精品国产综合| 久久久久国产精品一区| 久久久久一区二区三区| 美国成人毛片| 欧美精品久久久久久久| 欧美激情在线有限公司| 国产精品www色诱视频| 国产精品高潮视频| 国产日韩欧美一区二区三区四区| 国产美女扒开尿口久久久| 国产日韩欧美精品综合| 精品成人国产在线观看男人呻吟| 影音先锋在线一区| 亚洲三级电影在线观看| 中日韩在线视频| 欧美一区二区免费| 欧美成年人在线观看| 欧美日韩一区二区免费在线观看 | 制服诱惑一区二区| 亚洲宅男天堂在线观看无病毒| 欧美亚洲日本一区| 美女国产一区| 国产精品videosex极品| 国产一区二区中文| 99精品欧美一区二区蜜桃免费| 亚洲一级免费视频| 老鸭窝亚洲一区二区三区| 欧美视频在线观看免费网址| 国内精品久久久| 一本色道久久综合亚洲精品按摩| 欧美一区中文字幕| 欧美日韩视频在线观看一区二区三区| 国产日韩欧美91| 亚洲无毛电影| 欧美成人第一页| 国模私拍一区二区三区| 99国产精品久久久久老师| 久久精品30| 国产精品家庭影院| 亚洲人成艺术| 久久久亚洲高清| 国产精品美女在线| 日韩午夜在线播放| 老色鬼久久亚洲一区二区| 国产美女精品在线| 9国产精品视频| 欧美777四色影视在线| 国产日韩欧美中文| 亚洲小说区图片区| 欧美日韩国产成人| 亚洲国产三级| 另类专区欧美制服同性| 黑丝一区二区三区| 久久九九精品99国产精品| 国产精品羞羞答答| 亚洲免费一在线| 国产精品国产三级国产普通话蜜臀 | 在线观看成人小视频| 欧美在线视频观看免费网站| 欧美亚洲第一页| 一区二区三区四区蜜桃| 欧美精品少妇一区二区三区| 亚洲国产精品传媒在线观看 | 久久综合网络一区二区| 激情视频一区二区三区| 欧美在线精品免播放器视频| 国产日韩欧美a| 欧美制服丝袜第一页| 国产视频一区欧美| 欧美在线观看视频在线| 国产日韩欧美中文| 久久久久国产成人精品亚洲午夜| 国产夜色精品一区二区av| 久久久久九九九| 亚洲国产精品电影在线观看| 欧美xxx成人| 中国成人在线视频| 国产麻豆午夜三级精品| 久久久久se| 亚洲精品视频免费观看| 国产精品久久久久秋霞鲁丝| 午夜精品在线| 伊人久久亚洲美女图片| 欧美激情精品久久久| 亚洲一区免费网站| 国内精品福利| 欧美激情一区二区三区全黄| 一本色道久久88精品综合| 国产美女诱惑一区二区| 久久乐国产精品| 亚洲精选久久| 国产视频在线观看一区| 欧美二区在线| 亚洲欧美日韩综合| 亚洲国产一区二区a毛片| 欧美视频福利| 久久综合九色99| 亚洲一区二区在线免费观看| 国产一区二区三区四区三区四 | 欧美日韩一区二区三区| 久久精品麻豆| 亚洲午夜免费视频| 亚洲福利av| 国产欧美一区二区三区视频| 嫩草影视亚洲| 午夜精品偷拍| 99国产精品99久久久久久| 激情婷婷欧美| 国产伦精品一区二区三区高清| 欧美福利精品| 久久激情五月丁香伊人| 亚洲在线播放| 亚洲美女少妇无套啪啪呻吟| 国产综合色产在线精品| 欧美日韩综合视频| 欧美激情aⅴ一区二区三区| 久久成人18免费观看| 亚洲欧美国产精品桃花 | 欧美精品国产精品| 久久久久这里只有精品| 欧美一二三区在线观看| 亚洲一区黄色| 夜夜爽av福利精品导航| 亚洲黄色小视频| 亚洲电影中文字幕| 一区二区三区在线免费播放| 国产精品日本精品| 欧美日韩一区二区精品| 欧美激情第3页| 久久免费精品视频| 久久青草福利网站| 久久精品国产亚洲aⅴ| 性一交一乱一区二区洋洋av| 在线视频欧美日韩精品| 99re6热在线精品视频播放速度| 有码中文亚洲精品| 一区在线免费| 亚洲国产精品电影在线观看| 激情文学综合丁香| 亚洲二区在线视频| 亚洲精品中文字幕在线观看| 亚洲高清不卡一区| 亚洲巨乳在线| 一本综合久久| 午夜精品视频在线| 久久久久久久激情视频| 久久五月激情| 欧美日产一区二区三区在线观看| 欧美另类videos死尸| 国产精品对白刺激久久久| 国产精品美女在线观看| 国产伦理精品不卡| 永久免费视频成人| 一本久道久久久| 亚洲欧美日韩精品综合在线观看| 欧美在线观看视频| 另类天堂视频在线观看| 欧美日韩国产在线播放| 国产精品视频最多的网站| 韩国一区二区三区美女美女秀| 亚洲国产精品视频| 日韩五码在线| 欧美一区二区大片| 免费精品视频| 国产精品嫩草99a| 在线日韩中文| 午夜精品视频在线观看一区二区 | 亚洲国产一区二区精品专区| 亚洲香蕉视频| 免费欧美日韩|