99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                337p日本欧洲亚洲大胆色噜噜| 亚洲午夜电影在线观看| 国产精品嫩草影院av蜜臀| 国产精选一区二区三区| 中文字幕av一区二区三区高| 97久久精品人人澡人人爽| 亚洲综合在线免费观看| 欧美久久久久久久久久| 日韩福利电影在线观看| 26uuu精品一区二区三区四区在线| 成人一区二区三区视频| 一区二区三区中文在线| 日韩欧美在线影院| av在线不卡电影| 日韩电影在线观看网站| 久久久久国产精品厨房| 色综合av在线| 经典三级视频一区| 亚洲精品一二三四区| 亚洲精品一区二区三区四区高清| 色爱区综合激月婷婷| 久久99在线观看| 亚洲一区在线电影| 国产精品欧美经典| 日韩一级免费一区| 91久久精品一区二区三区| 国产精品一区二区在线播放| 亚洲综合色噜噜狠狠| 国产女人18毛片水真多成人如厕 | 成人av集中营| 久久狠狠亚洲综合| 亚洲成a人v欧美综合天堂| 国产精品久久国产精麻豆99网站| 欧美成人精品3d动漫h| 欧美日韩国产美| 欧美无乱码久久久免费午夜一区 | 久久99深爱久久99精品| 亚洲一线二线三线视频| 亚洲视频中文字幕| 亚洲欧洲国产专区| 国产欧美日韩精品在线| 日韩欧美一区在线观看| 欧美电影在哪看比较好| 欧美日韩不卡视频| 欧美日本一区二区三区四区| 94色蜜桃网一区二区三区| 国产精品一区专区| 天堂成人国产精品一区| 国产欧美日韩麻豆91| 久久无码av三级| 精品国产成人在线影院| 精品视频色一区| 欧美亚洲动漫精品| 在线观看网站黄不卡| 91老师片黄在线观看| 色综合咪咪久久| 成人黄色777网| 色综合久久中文字幕| 欧美亚洲国产一区在线观看网站| 欧美色倩网站大全免费| 91精品综合久久久久久| 久久众筹精品私拍模特| 国产精品久久毛片a| 亚洲精品视频在线看| 亚洲6080在线| 国产伦精一区二区三区| 国产91高潮流白浆在线麻豆| 91社区在线播放| 91精品国产乱码久久蜜臀| 精品久久人人做人人爽| 国产精品热久久久久夜色精品三区 | 国产精品的网站| 亚洲成a人片在线不卡一二三区| 蜜臀91精品一区二区三区| 高清av一区二区| 日本乱人伦一区| 欧美tk—视频vk| 亚洲欧美日韩系列| 美女视频黄a大片欧美| 成人av在线电影| 制服.丝袜.亚洲.另类.中文| 欧美mv日韩mv国产| 亚洲视频一二区| 久久国产麻豆精品| 99精品久久99久久久久| 欧美日本精品一区二区三区| 国产日韩欧美电影| 午夜成人免费视频| 成人午夜视频网站| 欧美一区二区三区视频免费| 国产精品国产三级国产有无不卡 | 亚洲国产精品国自产拍av| 亚洲成精国产精品女| 东方欧美亚洲色图在线| 在线播放国产精品二区一二区四区| 久久亚洲二区三区| 日韩高清在线观看| 一本色道a无线码一区v| 欧美国产精品一区二区| 老司机免费视频一区二区三区| 91蜜桃网址入口| 久久九九99视频| 免费在线观看一区| 欧美日韩中文字幕一区| 欧美国产激情一区二区三区蜜月 | 国产91对白在线观看九色| 欧美日韩aaa| 亚洲精品国产品国语在线app| 国内外精品视频| 51精品视频一区二区三区| 亚洲精品国产一区二区精华液 | 亚洲成人7777| 欧美影视一区二区三区| 欧美国产日本韩| 狠狠色综合色综合网络| 欧美va亚洲va在线观看蝴蝶网| 舔着乳尖日韩一区| 欧美乱妇23p| 日韩精品乱码av一区二区| 在线观看亚洲一区| 亚洲视频一二区| 91亚洲精品久久久蜜桃| 亚洲人精品午夜| 日本精品视频一区二区三区| 亚洲人成在线观看一区二区| 丁香六月综合激情| 欧美激情一区二区| 成人高清在线视频| 亚洲综合色丁香婷婷六月图片| 色婷婷av一区二区三区之一色屋| 自拍视频在线观看一区二区| 色伊人久久综合中文字幕| 亚洲宅男天堂在线观看无病毒| 欧美日韩国产成人在线91| 亚洲图片欧美色图| 欧美一级久久久| 国产成人av一区二区三区在线观看| 国产色产综合色产在线视频| av福利精品导航| 亚洲一二三四区不卡| 欧美一区二区二区| 粉嫩aⅴ一区二区三区四区| 中文字幕日韩一区| 欧美性生活久久| 久久99精品久久久久婷婷| 国产精品沙发午睡系列990531| 日本韩国欧美三级| 久久99日本精品| 国产精品免费看片| 5858s免费视频成人| 国产成人无遮挡在线视频| 国产精品久久久久久福利一牛影视| 91黄色免费看| 九一久久久久久| 亚洲欧美激情视频在线观看一区二区三区| 欧美精选在线播放| 国产成人av一区二区三区在线| 亚洲另类春色国产| 欧美精品一区在线观看| 色婷婷亚洲综合| 国产成人亚洲综合a∨婷婷 | 久久精品在线免费观看| 欧美午夜一区二区| 不卡一区二区在线| 久久激情五月婷婷| 夜夜精品浪潮av一区二区三区| 久久久久国产精品麻豆ai换脸| 欧美色精品在线视频| 国产成人免费视频| 奇米影视7777精品一区二区| 亚洲人成亚洲人成在线观看图片| 日韩欧美一级在线播放| 欧美日韩你懂得| 91在线视频播放地址| 国产成人午夜视频| 美美哒免费高清在线观看视频一区二区| 成人免费在线播放视频| 日本一区二区三区电影| 久久蜜桃av一区二区天堂| 欧美一级免费观看| 欧美日韩你懂的| 91国偷自产一区二区开放时间| 国产成人综合精品三级| 国产一区在线观看视频| 免费成人av在线| 日韩电影在线观看网站| 日韩中文字幕不卡| 婷婷成人综合网| 日韩高清不卡在线| 日本在线播放一区二区三区| 天天综合天天做天天综合| 亚洲成人第一页| 日韩中文字幕一区二区三区| 亚洲成人先锋电影| 亚洲电影中文字幕在线观看| 亚洲午夜在线电影| 日韩高清在线电影| 久久精品免费观看| 久久国产成人午夜av影院| 韩国女主播成人在线|