99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CMPUT 328、代寫VAE and Diffusion Models

時間:2023-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment 5
Generative Models (VAE and Diffusion Models)
CMPUT **8 - Fall 2023
1 Assignment Description
The main objective in this assignment is to implement and evaluate two of the most popular generative
models, namely Variational Auto-Encoders (VAE) and Diffusion Models. Our goal is to implement
each of these models on the FashionMNIST dataset and see how such models can generate new images.
However, instead of simply training the models on the whole dataset, we would like to be able to tell the
model from which class it should generate samples. Hence, we are going to implement class-conditional VAEs
and Diffusion Models.
Figure 1: Sample images from the FashionMNIST dataset
Note: Please the watch the video provided for this assignment for better understanding the tasks and
objectives.
2 What You Need to Do
For this assignment, 5 files are given to you:
• A5 vae submission.py
• A5 vae helper.ipynb
• A5 diffusion submission.py
• A5 diffusion helper.ipynb
• classifier.pt
You only need to submit “A5 vae submission.py”, “A5 diffusion submission.py”, and weights
of your networks (“vae.pt”, “diffusion.pt”).
1
2.1 Task 1: Conditional VAE (40%)
2.1.1 A5 vae submission.py
In this file there is a skeleton of a VAE class which you are required to complete.
1. For the VAE you need to implement the following components as specified in the code file: Encoder,
mu net (for estimating the mean), logvar net (for estimating the log-variance), class embedding module
(for properly embedding the labels), and decoder (for reconstructing the samples).
2. The forward function of the VAE class must receive the batch of images and their labels, and return
the reconstructed image, estimated mean (output of mu net), and the estimated logvar (output of the
logvar net).
3. You need to fill in the “reparameterize” method of the class given mu and logvar vectors (as provided
in the code), and implement the reparameterization trick to sample from a Gaussian distribution with
mean “mu”, and log-variance “logvar”.
4. You need to fill in the “kl loss” method of the class given mu and logvar vectors, and compute the
Kullback-Leibler (KL) divergence between the Gaussian distribution with mean “mu” and log-variance
“logvar” and the standard Gaussian distribution N (0, I). Recall that if the the mean and variance of
the a Gaussian distribution are µ and σ
2
, respectively, the KL divergence with the standard Gaussian
can be simply calculated as
KL(N (µ, σ2
)∥N (0, I)) = 1
2
Xn
i=1

2
i + µ
2
i − 1 − ln (σ
2
i
)) (1)
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VAE class and its methods. You can add as many extra functions/classes as
you need in this file. You can change the arguments passed to the “ init ” method of the class based
on your needs.
8. Finally, you need to complete the “load vae and generate” function at the bottom of the file, which
merely requires you to define your VAE.
2.1.2 A5 vae helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done with
your implementation of the VAE class you can start running the blocks of this file to train your model, save
the weights of your model, and generate new samples. You only need to specify some hyperparameters such
as batch size, optimizer, learning rate, and epochs, and of course your model.
There is also a brief description of the VAEs at the beginning of this file.
2
2.2 Task 2: Conditional Diffusion Model (60%)
2.2.1 A5 diffusion submission.py
In this file there are skeletons of a VarianceScheduler class, NoiseEstimatingNet class, and the DiffusionModel
class, which you are required to complete.
1. For the VarianceScheduler class you need to store the statistical variables required for making the
images noisy and sampling from the diffusion model, such as βt, αt, and ¯αt. You also need to complete
the “add noise” method which receives a batch of images and a batch of timesteps and computes the
noisy version of the images based on the timesteps.
2. You need to complete the NoiseEstimatingNet class, which is supposed to be a neural network (preferably a UNet) which receives the noisy version of the image, the timestep, and the label of the image,
and estimates the amount of noise added to the image. You are encouraged to look at the network
architectures you have seen in the notebooks provided to you on eClass resources. Note that you can
add extra functions and classes (e.g., for time embedding module) in this file.
3. You need to complete the “DiffusionModel” class. The forward method of the class receives a batch of
input images and their labels, randomly adds noise to the images, estimates the noise using NoiseEstimating network, and finally computes the loss between the ground truth noise and the estimated noise.
The forward method outputs the loss.
4. Most importantly, you need to fill in the “generate sample” method of the DiffusionModel class which
receives the number of images to be generated along with their labels, and generates new samples using
the diffusion model.
5. You need to fill in the “get loss” method of the class given the input batch of images and their labels.
In this method you need to find the estimated mu, estimated logvar, and the reconstructed image, find
the KL divergence using mu and logvar and find the reconstruction loss between the input image and
the reconstructed image. Usually for the reconstruction loss the Binary Cross-Entropy loss is used.
6. Most importantly, you need to fill in the “generate sample” method of the class, which receives the
number of images to be generated along with their labels, and generates new samples from the VAE.
Basically, you need to sample from standard Gaussian noise, combine it with the class embedding and
pass it to the networks decoder to generate new images.
7. Please do not rename the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes and their
methods. You can add as many extra functions/classes as you need in this file.
8. Finally, you need to complete the “load diffusion and generate” function at the bottom of the file,
which merely requires you to define your VarianceScheduler and NoiseEstimatingNet.
2.2.2 A5 diffusion helper.ipynb
This file is provided to you so you can train and validate your model more simply. Once you are done
with your implementation of the VarianceScheduler, NoiseEstimatingNet, and DiffusionModel classes you
can start running the blocks of this file to train your model, save the weights of your model, and generate
new samples. You only need to specify some hyperparameters such as batch size, optimizer, learning rate,
and epochs, and of course your model.
3
There is also a brief description of the Diffusion Models at the beginning of this file, including how to
make the noisy images, and how to sample from the diffusion model, which could be helpful.
3 Deliverables
• The correct (working) implementation of the explained modules in the previous section.
• For the diffusion model use a number of diffusion steps less than or equal to 1000 for a roughly fast
image generation.
• We verify the quality of the images generated by your models by using a classifier trained over the
dataset. This classifier is provided to you in the helper notebooks, and without changing the code you
can run the corresponding blocks to load the classifier and apply it to your generated images.
• For the VAE model, a final accuracy of ≥ 65% gets a full mark and an accuracy of < 55% gets no mark.
You mark will linearly vary for any accuracy in between.
• For the Diffusion Model, a final accuracy of ≥ 60% gets a full mark and an accuracy of < 50% gets no
mark. You mark will linearly vary for any accuracy in between.
In the following you can see some sample outputs of a simple VAE and a simple DiffusionModel trained
on the FashionMNIST.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做 COMP33 Modern Technologies程序語言代做
  • 下一篇:ACS11001代做、 Embedded Systems程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲一区二区三区中文字幕在线| 青青草精品视频| 一区二区三区影院| 青青草国产成人av片免费| 欧美影视一区在线| 亚洲婷婷在线视频| 不卡一区在线观看| 亚洲一区在线观看免费观看电影高清 | 午夜视频一区在线观看| 美脚の诱脚舐め脚责91| 91在线视频免费观看| 欧美tickling挠脚心丨vk| 免费在线观看不卡| 3d成人动漫网站| 蜜臀久久久久久久| 国产日韩精品一区二区三区在线| 成人午夜在线免费| 午夜视频一区在线观看| 国产成人综合视频| 奇米777欧美一区二区| 中日韩av电影| 日韩免费视频线观看| 成人动漫一区二区三区| 日本在线不卡一区| 亚洲天堂av一区| 欧美精品一区二区三区很污很色的 | 高清在线不卡av| 夜夜嗨av一区二区三区中文字幕| xnxx国产精品| 日韩欧美在线观看一区二区三区| 色婷婷久久综合| 国产一区二区三区四区五区美女| 日韩激情视频网站| 午夜伊人狠狠久久| 亚洲电影一级黄| 一区二区三区在线免费视频 | 亚洲国产高清在线| 日韩精品一区在线| 欧美精品在线观看一区二区| 国产精品一区二区在线观看网站| 一区二区三区欧美日| 亚洲蜜桃精久久久久久久| 久久久精品影视| 麻豆国产欧美日韩综合精品二区| 国产精品久久久久久久久免费樱桃| 欧美日本免费一区二区三区| 日本高清不卡视频| 成人黄页在线观看| 色综合咪咪久久| 日韩欧美在线123| 中文字幕精品三区| 亚洲欧洲制服丝袜| 欧美亚洲一区三区| 91麻豆精品国产综合久久久久久| 欧美日韩成人综合| 欧美日韩一级视频| 欧美一区二区三区在线电影| 欧美va在线播放| 中文字幕一区二区三区不卡 | 在线播放欧美女士性生活| 欧美日韩精品二区第二页| 欧美日韩精品一区二区天天拍小说 | 亚洲男人天堂av网| 首页国产丝袜综合| 久久 天天综合| 色综合中文字幕国产 | 91网站在线播放| 91精品黄色片免费大全| 亚洲国产精品ⅴa在线观看| 免费观看一级特黄欧美大片| 成+人+亚洲+综合天堂| 欧美大片在线观看| 亚洲午夜一区二区三区| 成人激情综合网站| 一区二区三区.www| 夜夜嗨av一区二区三区中文字幕| 男人的天堂久久精品| 美女一区二区久久| 亚洲靠逼com| 国产精品久久久久影院| heyzo一本久久综合| 亚洲日本韩国一区| 欧美福利视频一区| 国产美女精品在线| 舔着乳尖日韩一区| 亚洲视频 欧洲视频| 激情五月激情综合网| 99这里都是精品| 国产精品国产三级国产普通话三级| 国内久久婷婷综合| 日韩午夜中文字幕| 精品一区二区三区日韩| 日韩欧美精品在线视频| 欧美aⅴ一区二区三区视频| 欧美精品黑人性xxxx| 亚洲高清一区二区三区| 日韩一级黄色大片| 国产自产高清不卡| 国产精品欧美极品| 91在线小视频| 亚洲成人你懂的| 26uuu亚洲| 成人在线视频一区| 日本一区二区免费在线| 99精品偷自拍| 国产在线播放一区| 亚洲va韩国va欧美va| 亚洲视频在线观看三级| 精品国产91九色蝌蚪| 91国产成人在线| 国产激情视频一区二区三区欧美 | 欧美日韩国产成人在线91| 国产一区不卡精品| 日韩专区一卡二卡| 亚洲精品第1页| 亚洲日本在线a| 国产精品对白交换视频| 国产精品欧美一区喷水| 久久影视一区二区| 日韩午夜精品视频| 精品伦理精品一区| 国产无人区一区二区三区| 久久影院午夜论| 国产日韩综合av| 国产色爱av资源综合区| 国产精品久久久久久久浪潮网站| 国产欧美日韩麻豆91| 自拍av一区二区三区| 亚洲国产日产av| 国产成人99久久亚洲综合精品| 91色.com| 欧美韩国日本一区| 全国精品久久少妇| 国模大尺度一区二区三区| 99re成人在线| 99精品视频在线播放观看| 9191国产精品| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆 | 中文字幕巨乱亚洲| 国产精品久久久久久久久免费丝袜| 亚洲欧美日韩国产中文在线| 免费成人在线影院| 色综合婷婷久久| 精品视频免费看| 亚洲黄色在线视频| 92精品国产成人观看免费 | 一本久久精品一区二区| 精品福利在线导航| 久久99国产精品免费网站| 国产精品不卡一区| 国产精品乱码一区二区三区软件| 精品久久久久一区| 国产高清成人在线| 青椒成人免费视频| 综合分类小说区另类春色亚洲小说欧美 | 91黄色小视频| 亚洲免费视频成人| 日韩一区二区三区精品视频| 亚洲色欲色欲www| 日韩欧美综合一区| 丁香一区二区三区| 国产成人一区在线| 91丨国产丨九色丨pron| 97久久久精品综合88久久| 丁香啪啪综合成人亚洲小说| 国产成人综合亚洲91猫咪| 国产成人免费视频精品含羞草妖精| 国产成人在线视频免费播放| 在线一区二区三区| 懂色av中文一区二区三区| 国内久久精品视频| 亚洲免费电影在线| 久久精品免费看| 欧美电视剧在线观看完整版| 国产亚洲欧美一区在线观看| 五月天激情综合网| 99久久99久久精品免费观看| 久久久国产午夜精品| 亚洲天天做日日做天天谢日日欢| 欧美性xxxxxxxx| 成人精品免费视频| 色久综合一二码| 日韩精品国产精品| 欧美午夜精品理论片a级按摩| 亚洲精品日日夜夜| 日韩欧美国产不卡| 成人福利视频网站| 日韩国产精品91| 亚洲欧美日韩中文播放| 亚洲国产精品ⅴa在线观看| 精品日产卡一卡二卡麻豆| 亚洲欧洲另类国产综合| www久久久久| 亚洲国产精品久久不卡毛片 | 久久久久久日产精品| 中文一区二区在线观看| 在线免费视频一区二区| www.亚洲免费av| 国产精品区一区二区三区| 欧美巨大另类极品videosbest|