合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        FITE7410代做、代寫R編程語言

        時間:2023-12-04  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        FITE7410 Financial Fraud Analytics
        First Semester, 202**024
        Mini Case Study: Real-life Fraud Detection Scenario
        (Due Date: 4 Dec, 2023 (Mon) 23:59)
        (1) Learning Objectives
        a. Analyze a real-world dataset to promote fraud analytics thinking.
        b. Identify which explanatory variables may be good predictors or red flags associated with
        fraud.
        c. Work through the stages in model building and validation.
        d. Apply the built model to classify a case based on the predicted risk of fraud.
        e. Make a scenario-based decision informed by data analyses.
        (2) Instructions
        You are provided with a real-world dataset (ENRON case) containing fraud transaction
        information. Your task is to analyze the dataset and develop a fraud detection model using
        machine learning techniques. Follow the steps below to complete the assignment:
        a) Define the scope and objective of the case study.
        b) Exploratory Data Analysis:
        • Explore the dataset to understand its structure, features, and statistical properties.
        • Perform exploratory data analysis techniques, such as data visualization and
        statistical analysis, to gain insights into the relationships between variables and
        fraud.
        • Conduct a thorough analysis of the dataset to identify which explanatory variables
        are good predictors or red flags associated with fraud.
        • Perform data cleaning and preprocessing as necessary.
        c) Model Building and Validation:
        • Select appropriate at least TWO machine learning algorithms or any appropriate
        data analytics techniques (e.g. social network analysis, statistics analysis) for fraud
        detection.
        • Split the dataset into training and testing sets.
        2
        • Develop a fraud detection model using the chosen algorithm(s) and train it on the
        training set.
        • Evaluate the performance of the model using appropriate evaluation metrics.
        • Iterate on the model building process, adjusting hyperparameters or trying different
        algorithms, to improve the model's performance.
        d) Fraud Scenario Identification:
        • Develop a scenario related to financial fraud detection, such as a suspicious
        transaction or a potential fraudulent activity.
        • Use the trained model and the available data to make a data-informed decision
        regarding the given scenario.
        • Justify your decision based on the insights gained from the data analysis and the
        model's predictions.
        e) Non-data analytic element:
        • What are the risks and red flags of the case, with the objective to prevent similar
        financial frauds in future?
        • What are the other non-data analytic elements that should be considered (e.g.
        corporate governance and controls)?
        • Do you have any suggestions on how to prevent similar financial fraud in future?
        (3) Submission Guidelines
        1. Report
        Prepare a comprehensive report, documenting each step of your analysis, including
        explanations, visualizations, and any insights gained. Include the results of model
        evaluation and performance metrics. Present your scenario-based decision and provide
        a clear rationale for your choice.
        The report is max 8 pages long (not including Appendix) and should contain:
        • Your name and student ID
        • Title of the project
        • Background and objectives of the case study
        • Description of the dataset and the fraud data analytics method
        • Describe and interpret the result of the new fraud detection model
        • Summary and recommendation
        • Cite any references (such as websites, book chapters, articles, etc) you may have
        used
        2. Program
        Submit your R program on moodle.
        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做Econ78010、R編程設計代寫
      2. 下一篇:代寫SECU73000、Python,Java程序代做
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 国产精品亚洲午夜一区二区三区| 亚洲av色香蕉一区二区三区| 无码AV中文一区二区三区| 一区二区传媒有限公司| 久久免费国产精品一区二区| 精品不卡一区中文字幕| 蜜臀AV免费一区二区三区| 一区二区3区免费视频| 黑巨人与欧美精品一区| 国产经典一区二区三区蜜芽| 亚洲A∨无码一区二区三区 | 精品国产一区二区三区麻豆 | 无码人妻精品一区二区蜜桃网站| 精品一区二区三区免费视频| 国产SUV精品一区二区88L| 夜夜精品视频一区二区| 国产精品一区二区电影| 无码精品不卡一区二区三区 | 日本欧洲视频一区| 成人区精品人妻一区二区不卡| 国产成人精品a视频一区| 一区二区三区视频在线播放| 无遮挡免费一区二区三区| 日韩精品一区二区午夜成人版 | 在线播放国产一区二区三区 | 任你躁国产自任一区二区三区| 国产日韩AV免费无码一区二区三区 | 亚洲一区二区三区在线播放| 日韩十八禁一区二区久久| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 国产成人一区二区三区免费视频| 欧美亚洲精品一区二区| 国产精品一区二区在线观看| 欧洲精品码一区二区三区免费看| jazzjazz国产精品一区二区| 国产色情一区二区三区在线播放| 人妻少妇精品视频一区二区三区 | 亚洲高清毛片一区二区| 成人免费视频一区| 亚洲国产综合无码一区二区二三区| 成人国内精品久久久久一区|