合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        MA2552編程代寫、代做MATLAB程序

        時間:2023-12-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


        MA2552 Introduction to Computing (DLI) 2023/24

        Computer Assignment 3

        1. Write a function with header [B] = myMakeLinInd(A), where A and B are matrices.

        Let the rank(A) = n, then B should be a matrix containing the first n columns of A

        that are all linearly independent.

        2. Write a function alpha = myPolyfit(n,p,x) that finds the coefficients of a polynomial p(x) of degree n that fits the data in p and x. Your function should solve this

        problem as a linear system of equations and show an error if there is either no solution

        or an infinite number of solutions.

        3. Repeat the question above but using the least square method instead. Note that now

        there is always a unique solution, independently of the length p and x. You can check

        your results with the MATLAB built-in function polyfit.

        4. Using the bisection method, write a function r = myRoots(alpha) that outputs the

        (real) roots of a polynomial whose coefficients are the elements of the (real-valued)

        array alpha. You can check your method with the MATLAB built-in function roots.

        Hint: Find the intervals of monotony by finding the roots of the derivative of the

        polynomial.

        5. The eigenvalues λ of a (square) matrix A correspond to the roots of the function

        p(λ) = det(A − λI), where I denotes the identity matrix. Explain why if A is of size

        n, then p(λ) is a polynomial of degree n. Next, using question 3 and question 4, code

        a function that finds the real eigenvalues A and their corresponding eigenvectors.

        6. The singular value decomposition of a matrix A of size n×m, is a factorisation of A in

        the form A = USV t

        , where both U and V are (full rank) (orthonormal) square matrices

        and S is a non-necessarily-square diagonal matrix whit non-negative elements. The

        non-zero elements of the diagonal of S, called singular values of A, correspond to the

        square root of the non-zero eigenvalues of AAt

        (or AtA). The matrix V is formed by the

        eigenvectors of AtA and the matrix U is formed by the eigenvectors of AAt

        . Using eig,

        implement a function [U,S,V] = mySVD(A) which computes the SVD decomposition

        of a matrix A.

        7. Note that the rank of a matrix A is given by the number of non-zero singular values of

        A (why?). Write a function that take as input a matrix A, and outputs a new matrix

        Ak, which is k-rank version of A, computed by keeping the k-largest singular values

        of A. Use this function to show a low rank version of the image of question 10 of

        Assignment 1.

        8. Find regression curves for the average runtime data T1(n) and T2(n), corresponding

        to the runtime of the code of question 10 of Assignment 2, and its efficient version,

        respectively, where n is the size of the input matrix M. Plot your regression curves along

        with the runtime data. Can you quantify now how faster is the efficient implementation

        with respect to the inefficient one?

        1

        MA2552 Introduction to Computing (DLI) 2023/24

        9. Implement a MATLAB function that take as input two arrays f and x, representing

        the values of a real valued function f(x); the array x should be evenly spaced. Your

        function should:

        (a) create a new array f_s which replace each element of f with the average of its k

        nearest neighbours (k should also be an input of your function) to the left and to

        the right. The function f_s is a way of regularising a noisy or irregular function.

        (b) returns the numerical derivative of fs using a centred first order finite difference

        scheme that you should also implement.

        Test your code with x = linspace(0,2*pi,1000)and f = sin(x) + 0.1*randn(size(x)),

        for different values of k.

        10. Write a function I = myTrapez(f, a, b, n), which computes the approximation of

        R b

        a

        f(x) dx by a trapezoidal rule: R b

        a

        f(x) dx ≈ h

        h

        f(a)+f(b)

        2 +

        Pn−1

        k=1 f(xk)

        i

        , where xk =

        a + hk, and h =

        b−a

        n

        .Your function should not use any built-in Matlab functions. Test

        your function by computing R 1

        0

        1 − x

        2 dx, with n = 10, 20, and 40. Given that the

        exact value of the integral is π/4, how does the error of the approximateresult scale

        with n?

        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫COMP3023、C/C++語言編程代做
      2. 下一篇:代寫COMP26120、代做C++, Java/Python編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 免费观看日本污污ww网站一区| 久久精品国产第一区二区| 香蕉免费一区二区三区| 伊人色综合一区二区三区影院视频 | 一本久久精品一区二区| 奇米精品一区二区三区在线观看| 无码人妻一区二区三区兔费 | 亚洲国产欧美国产综合一区 | 亚洲天堂一区在线| V一区无码内射国产| 国产一区二区三区露脸| 午夜视频一区二区| 国产精品无码一区二区三区不卡 | 亚洲av不卡一区二区三区| 亚洲AV永久无码精品一区二区国产| 成人一区专区在线观看| 亚洲国产一区二区三区在线观看 | 一区二区乱子伦在线播放| 97久久精品无码一区二区| 肉色超薄丝袜脚交一区二区| 久久国产一区二区| 亚洲av午夜福利精品一区人妖| 无码人妻一区二区三区免费看| 久久影院亚洲一区| 亚洲啪啪综合AV一区| 精品国产一区二区三区久久| 国产在线一区二区在线视频| 中文字幕一区二区三区视频在线| 一区二区三区四区电影视频在线观看| 一区二区国产在线观看| 精品人妻少妇一区二区三区在线 | 国产乱码精品一区二区三 | 久久一区二区三区精品| 无码一区二区三区| 人妖在线精品一区二区三区| 影音先锋中文无码一区| 无码喷水一区二区浪潮AV| 日亚毛片免费乱码不卡一区 | 无码一区18禁3D| 国产精品亚洲一区二区三区 | 无码一区二区三区免费视频|