99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫DAT 560M、代做R編程語言

時(shí)間:2023-12-09  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CSCI 2122代寫、代做C++設(shè)計(jì)程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产在线视视频有精品| 国产日产亚洲精品系列| 同产精品九九九| 国产精品拍天天在线| 天天色 色综合| 欧美一级精品在线| 成人黄色大片在线观看| 久久国产人妖系列| 国产精品女人毛片| 国产午夜精品一区二区| 精品国产成人系列| 欧亚洲嫩模精品一区三区| 久久国产精品色| 亚洲观看高清完整版在线观看| 久久久久久久国产精品影院| 中文字幕在线不卡一区| 欧美久久久一区| 91免费版pro下载短视频| 国产福利精品导航| 色综合咪咪久久| 91色九色蝌蚪| 色噜噜狠狠一区二区三区果冻| 一本大道久久a久久精二百| 成人av第一页| 一本到一区二区三区| 国产精品18久久久久久久久久久久 | 香蕉久久夜色精品国产使用方法 | 精品少妇一区二区三区在线播放| 欧美日韩三级视频| 久久久噜噜噜久噜久久综合| 亚洲一区在线电影| 激情五月激情综合网| 91久久精品网| 亚洲国产高清不卡| 国产成人日日夜夜| 日韩精品专区在线影院重磅| 亚洲欧美激情小说另类| 国内外精品视频| 欧美日韩亚洲综合| 亚洲蜜臀av乱码久久精品蜜桃| 国产最新精品免费| 精品国产成人系列| 国产女主播视频一区二区| 国内精品伊人久久久久av一坑 | 日韩精品一二区| 538prom精品视频线放| 亚洲国产一二三| 色欧美日韩亚洲| 亚洲一区在线看| 91精品国产欧美一区二区| www久久精品| 欧美久久婷婷综合色| 99re热这里只有精品免费视频| 麻豆精品在线视频| 亚洲成av人片| 欧美激情在线观看视频免费| 国产日本一区二区| 国产不卡视频在线播放| 6080yy午夜一二三区久久| 色哟哟国产精品| 97久久精品人人做人人爽50路| 久久99久久99小草精品免视看| 日韩**一区毛片| 免费在线观看日韩欧美| 成人sese在线| 亚洲三级视频在线观看| 精品中文av资源站在线观看| 亚洲你懂的在线视频| 亚洲精品在线观| 欧美一区二区三区影视| 懂色av一区二区在线播放| 亚洲1区2区3区视频| 久久精品亚洲精品国产欧美kt∨| 欧美成人精品3d动漫h| 91在线精品一区二区| 日本三级韩国三级欧美三级| 亚洲地区一二三色| 亚洲日本丝袜连裤袜办公室| 欧美精品一区在线观看| 在线成人高清不卡| 欧美一区在线视频| 日韩一级二级三级| 欧美一区二区久久| 久久久久久亚洲综合影院红桃| 3751色影院一区二区三区| 日本韩国一区二区三区| 日本精品裸体写真集在线观看| 91丝袜美女网| 欧美午夜在线一二页| 欧美午夜精品电影| 6080午夜不卡| 亚洲国产精品精华液2区45| 欧美极品少妇xxxxⅹ高跟鞋| 亚洲同性同志一二三专区| jlzzjlzz亚洲日本少妇| 日本va欧美va精品发布| 中文字幕一区二区视频| 91伊人久久大香线蕉| 日本一二三四高清不卡| 99久久免费视频.com| 亚洲视频网在线直播| 成人av影院在线| 日本一区二区三区国色天香| 91在线精品一区二区| 国产一区二区三区香蕉| 国产区在线观看成人精品| 亚瑟在线精品视频| 亚洲永久精品大片| 国产日韩精品一区二区三区| 精品久久人人做人人爰| 国产欧美一区二区精品秋霞影院 | 亚洲亚洲精品在线观看| 亚洲国产日韩精品| 欧美aaaaaa午夜精品| 丰满白嫩尤物一区二区| 欧美在线不卡一区| 久久久久久电影| 亚洲一区二区三区国产| 国产一区二区女| 欧美日韩在线播放三区| 欧美精品一区二区三区在线播放 | 国产麻豆午夜三级精品| 欧美一区二区三区在线视频| 亚洲一区二区三区四区在线观看| 国产精品一区一区三区| 国产日韩欧美在线一区| 国产精品一二三区在线| 国产校园另类小说区| 欧美一区二区三区视频在线| 肉丝袜脚交视频一区二区| 欧美色综合网站| 日韩av中文字幕一区二区| 日韩视频123| 国产精品一区在线观看乱码| 国产三级精品在线| 色狠狠色狠狠综合| 日本欧美大码aⅴ在线播放| 日韩西西人体444www| 成人爽a毛片一区二区免费| 国产精品嫩草99a| 欧美日韩免费高清一区色橹橹| 青青草视频一区| 久久久精品蜜桃| 欧美日韩成人高清| 丁香一区二区三区| 亚洲成人av一区二区三区| 精品成人一区二区三区四区| 成人国产亚洲欧美成人综合网 | 91精品中文字幕一区二区三区| 五月天婷婷综合| 久久久久久久久99精品| 在线观看视频一区二区| 国产资源精品在线观看| 日日摸夜夜添夜夜添精品视频| 中文子幕无线码一区tr| 91精品国产丝袜白色高跟鞋| 国产盗摄精品一区二区三区在线| 亚洲午夜精品一区二区三区他趣| 精品中文字幕一区二区| 春色校园综合激情亚洲| 99re热视频这里只精品| 日精品一区二区| 国产精品毛片大码女人| 欧美人xxxx| 风间由美一区二区av101| 美女看a上一区| 亚洲一线二线三线视频| 日本一区二区不卡视频| 国产视频亚洲色图| 亚洲免费观看高清完整| 久久免费午夜影院| 成人看片黄a免费看在线| 中文字幕国产一区二区| 亚洲欧洲日本在线| 成人一区二区三区| 亚洲一区二区三区三| 91精品久久久久久久久99蜜臂| 亚洲国产精品尤物yw在线观看| 最新日韩av在线| 亚洲人成网站影音先锋播放| 一区二区在线观看av| 美女被吸乳得到大胸91| 日韩成人午夜精品| 欧美变态tickling挠脚心| 日韩视频在线永久播放| 精品日本一线二线三线不卡| 久久蜜桃av一区二区天堂 | 久久人人超碰精品| 久久综合色8888| 国产日韩欧美精品在线| 国产精品国产三级国产aⅴ原创 | 色综合久久久久久久| 欧美性xxxxxxxx| 欧美不卡123| 亚洲日本欧美天堂| 日韩av在线免费观看不卡| 国产精品亚洲一区二区三区妖精| 成人一区二区在线观看| 91精品国产一区二区| 国产欧美精品一区二区色综合 |