99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設(shè)計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美va亚洲va国产综合| 亚洲国产小视频在线观看| 久久综合久久久| 亚洲人屁股眼子交8| 国产美女扒开尿口久久久| 欧美国产日韩精品| 久久国产精品毛片| 中文日韩在线视频| 亚洲日本激情| 在线观看91精品国产麻豆| 国产伦精品一区二区三区照片91 | 国一区二区在线观看| 国产精品海角社区在线观看| 欧美va天堂va视频va在线| 久久精品国产综合| 亚洲欧洲99久久| 宅男精品导航| 亚洲午夜黄色| 中文在线资源观看网站视频免费不卡| 亚洲国产精品视频| 一区久久精品| 黄色免费成人| 在线看片第一页欧美| 激情成人av在线| 极品少妇一区二区三区精品视频| 国产日产亚洲精品系列| 国产精品一区二区久激情瑜伽| 国产精品美女久久久浪潮软件| 欧美日韩蜜桃| 国产精品ⅴa在线观看h| 国产精品vvv| 国产精品午夜在线观看| 国产三区精品| 136国产福利精品导航网址| 精品动漫3d一区二区三区免费 | 国产亚洲电影| 狠狠久久婷婷| 亚洲毛片在线看| 亚洲片区在线| 亚洲一二三区在线观看| 亚洲一本视频| 久久久水蜜桃| 欧美电影在线播放| 欧美色区777第一页| 国产精品夜色7777狼人| 狠狠久久亚洲欧美专区| 亚洲激情欧美激情| 亚洲视频第一页| 欧美与黑人午夜性猛交久久久| 久久人人爽爽爽人久久久| 欧美福利在线| 国产乱码精品一区二区三区五月婷 | 欧美午夜精品理论片a级按摩 | 欧美在线二区| 欧美va亚洲va日韩∨a综合色| 欧美精品日韩综合在线| 国产精品视区| 亚洲日本aⅴ片在线观看香蕉| 亚洲视频1区2区| 久久久精品2019中文字幕神马| 欧美黄色免费| 国产午夜亚洲精品不卡| 亚洲精品乱码久久久久| 欧美一级淫片aaaaaaa视频| 鲁大师成人一区二区三区| 这里是久久伊人| 久久久成人网| 欧美日韩专区| 亚洲国产欧美日韩精品| 亚洲在线1234| 欧美激情亚洲一区| 国产午夜一区二区三区| 一区二区三区国产在线| 欧美成人自拍| 激情综合久久| 欧美一级视频免费在线观看| 欧美国产日韩一二三区| 韩国在线视频一区| 亚洲欧美久久久久一区二区三区| 免费亚洲一区二区| 黄色精品一二区| 欧美专区在线观看| 国产欧美日韩激情| 亚洲欧美电影在线观看| 亚洲视频图片小说| 久久免费99精品久久久久久| 欧美婷婷六月丁香综合色| 亚洲精品日韩一| 久久亚洲精选| 国产一区二区三区精品久久久| 亚洲在线免费| 国产精品区免费视频| 宅男精品导航| 国产精品久久久久久模特 | 亚洲精美视频| 欧美成人资源| 亚洲精品影院在线观看| 欧美激情在线播放| 亚洲精品自在久久| 欧美日韩中文另类| 亚洲深夜福利视频| 国产精品免费看片| 亚洲自拍16p| 国产喷白浆一区二区三区| 午夜老司机精品| 精久久久久久久久久久| 久久久噜噜噜久久中文字免 | 欧美中文在线观看国产| 国产婷婷一区二区| 久久综合中文字幕| 亚洲日本中文字幕免费在线不卡| 欧美精品观看| 亚洲欧美日本国产专区一区| 国产麻豆91精品| 久久精品五月婷婷| 亚洲欧洲综合另类在线| 国产精品成人av性教育| 久久成人一区| 亚洲片在线观看| 国产精品一卡| 蜜桃久久精品一区二区| 9国产精品视频| 国产人妖伪娘一区91| 牛夜精品久久久久久久99黑人 | 欧美日韩国产123区| 校园春色国产精品| 亚洲国产精品一区二区尤物区| 欧美日本国产| 久久精品一区二区| 一本色道久久88综合日韩精品| 国产精品亚洲激情| 欧美国产综合| 欧美一区二区三区四区高清| 影音先锋国产精品| 欧美亚男人的天堂| 欧美 日韩 国产在线 | 一区二区三区色| 国产一区二区无遮挡| 欧美精品九九99久久| 久久本道综合色狠狠五月| 亚洲精品一区中文| 狠狠入ady亚洲精品经典电影| 欧美日韩免费一区二区三区视频| 久久精品视频免费观看| 亚洲素人一区二区| 亚洲黄色尤物视频| 国产区二精品视| 欧美午夜不卡| 欧美精品在线观看一区二区| 久久国内精品自在自线400部| 亚洲图片激情小说| 亚洲人成网在线播放| 亚洲成色www久久网站| 国产一区二区三区电影在线观看 | 亚洲最新在线视频| 亚洲激情视频在线观看| 韩日成人av| 国产欧美一区二区在线观看| 国产精品99一区| 欧美日韩高清免费| 免费91麻豆精品国产自产在线观看| 欧美一区2区视频在线观看| 亚洲国产精品女人久久久| 合欧美一区二区三区| 国产一区视频网站| 国产自产在线视频一区| 国产精品嫩草99av在线| 欧美日韩国产高清视频| 欧美激情一区二区三区全黄| 蜜桃av一区| 欧美激情在线| 欧美日韩午夜在线| 欧美视频一区二区在线观看| 嫩模写真一区二区三区三州| 欧美www在线| 欧美国产日韩视频| 欧美久久99| 欧美日韩精品免费观看视频完整 | 欧美大片一区| 欧美精品入口| 国产精品极品美女粉嫩高清在线 | 欧美午夜精品久久久久久浪潮| 国产精品久久激情| 国产亚洲精品bv在线观看| 激情久久五月| 亚洲日韩欧美视频| 一二三区精品| 亚洲专区在线| 久久久噜噜噜久久中文字幕色伊伊| 欧美亚洲免费在线| 美女免费视频一区| 国产精品www994| 国产主播一区| 亚洲欧洲三级| 亚洲综合色激情五月| 久久亚洲精品视频| 欧美视频在线不卡| 精品成人一区| 亚洲一区免费看| 老司机午夜免费精品视频|