99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产又色又爽又黄又免费| 久久久久久久久久一区二区| 一级黄色在线观看| av在线无限看| 国产美女www爽爽爽| 久久精品视频6| 日韩人妻精品中文字幕| 伊人成人在线观看| 亚洲精品一区二区二区| av无码一区二区三区| 国产精品爽爽久久久久久| 精品91久久久| 三级网站免费看| 性色av浪潮av| 99热这里只有精品9| 精品国产一区二区三区四| 欧美精品一二三四区| 五月婷婷六月丁香激情| 亚洲男人的天堂在线视频| 波多野结衣亚洲一区二区| 久久久福利影院| 婷婷久久久久久| 99精品一区二区三区无码吞精| 国产欧美第一页| 日韩不卡高清视频| 亚洲天堂一级片| 精产国品一二三区| 婷婷激情小说网| 国产超碰在线播放| 欧美 日韩 国产 成人 在线观看 | 91久久免费视频| 国产一区二区三区四区五区六区 | 中文字幕无人区二| 国产精品v日韩精品v在线观看| 欧美日韩生活片| 亚洲无码精品一区二区三区| 精品久久人妻av中文字幕| 午夜精品久久久久久久99热影院| 成人在线观看一区二区| 潘金莲一级淫片aaaaa| 亚洲精品1区2区3区| 国产在线一卡二卡| 制服丝袜在线一区| 国内偷拍精品视频| 中文字幕精品一区二| 国产又粗又猛又爽又黄的视频小说| 三级av免费观看| 国产精品国产三级国产专区52| 天天影视色综合| 国产一级一级国产| 在线精品视频播放| 国产一卡二卡在线| 亚洲精品无码久久久| 久草成人在线视频| 亚洲伦理在线观看| 人妻少妇精品无码专区| 超碰在线人人干| 久久国产精品免费看| 亚洲国产av一区二区三区| 久久黄色小视频| 337人体粉嫩噜噜噜| 日产电影一区二区三区| 国产丰满果冻videossex| 午夜不卡福利视频| 久久精品一卡二卡| 99精品视频免费看| 性高潮久久久久久久久久| 精品国产乱码久久久久久鸭王1| 中文字幕av不卡在线| 男人天堂一区二区| 国产精品视频在| 亚洲精品乱码久久久久久蜜桃图片 | 十八禁一区二区三区| 国产在线视频卡一卡二| 97人妻天天摸天天爽天天| 无限资源日本好片| 免费黄色三级网站| 国产又黄又粗视频| av永久免费观看| 中文字幕在线看高清电影| 色香蕉在线视频| 久久亚洲精品石原莉奈| 国产精品成人免费一区久久羞羞| 亚洲高清视频网站| 午夜影院免费在线观看| 欧美特级黄色片| 精品久久久99| 国产乱女淫av麻豆国产| av男人的天堂av| 亚洲色图欧美另类| 中文字幕亚洲乱码| 午夜一级黄色片| 神马午夜一区二区| 殴美一级特黄aaaaaa| 久久精品久久国产| 精品人妻一区二区三区浪潮在线| 国产高清免费av| 国产av 一区二区三区| 97超碰免费在线观看| 亚洲欧美日韩一级| 中国黄色一级视频| 伊人精品一区二区三区| 五月天激情开心网| 无码人妻久久一区二区三区蜜桃| 日本三级一区二区三区| 人成网站在线观看| 日本高清黄色片| 日韩免费成人av| 少妇精品一区二区三区| 日韩免费视频网站| 天堂www中文在线资源| 少妇一级淫免费放| 香港三日本8a三级少妇三级99| 天堂中文字幕av| 亚洲av无一区二区三区| 怡春院在线视频| 中文字幕永久在线观看| 亚洲精品鲁一鲁一区二区三区| 亚洲色成人www永久网站| 亚洲另类欧美日韩| www.99re7| 国产一级视频在线观看| 精品欧美一区二区三区免费观看| 精品免费囯产一区二区三区| 久久久久在线视频| 日韩三级视频在线| 中文在线免费看视频| 一级黄色a毛片| 国产高清中文字幕| 九九热久久免费视频| 欧产日产国产精品98| 四虎国产精品免费| 中文字幕人妻精品一区| 91色在线播放| 国产一区二区三区影院| 欧美激情一区二区三区免费观看 | 亚洲男人第一天堂| av网站中文字幕| 黄色永久免费网站| 人妻无码一区二区三区久久99| 天堂av网手机版| 亚洲视频免费播放| 国产精品久免费的黄网站| 美女日批在线观看| 亚洲 欧美 精品| av在线亚洲天堂| 久久午夜免费视频| 伊人久久久久久久久久久久久久| 亚洲制服在线观看| 精品人妻一区二区三区蜜桃视频| 少妇av在线播放| 97超碰在线免费观看| 久草资源在线视频| 一区二区不卡视频在线观看| 91影院在线播放| 麻豆视频免费在线播放| 中文天堂在线资源| 国产亚洲精品av| 午夜免费福利在线| 国产 日韩 欧美 精品| 欧美人一级淫片a免费播放| 中文字幕乱码在线| 国产又粗又猛又爽又| 天天天天天天天天操| 国产成人无码www免费视频播放| 久久一二三四区| 亚洲欧美偷拍另类| 精品黑人一区二区三区国语馆| 一炮成瘾1v1高h| 韩国中文字幕hd久久精品| 午夜老司机福利| 国产欧美精品一二三| 五月婷婷激情久久| 国产性一乱一性一伧一色| 天堂中文在线资源| 国产美女视频免费看| 亚州av综合色区无码一区| 国产女人高潮毛片| 中文字幕一区二区人妻电影| 精品国产伦一区二区三| 中文字幕在线播出| 男人的天堂a在线| a级片在线免费看| 天天综合网久久| 黄色av免费观看| 亚洲欧美在线观看视频| 欧美成人国产精品高潮| www.四虎精品| 无限资源日本好片| 黄色一级片一级片| 2018国产精品| 五月天婷婷亚洲| 久久免费精品国产| 9191在线视频| 亚洲v在线观看| 久久一级黄色片| 国产精品2020| 亚洲色婷婷一区二区三区| 三区四区在线观看| 久操视频免费在线观看|