99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設(shè)計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美在线999| 国产精品久久午夜| 亚洲欧美视频在线观看| 成人高清免费在线播放| 中文字幕人成不卡一区| 91首页免费视频| 亚洲国产综合人成综合网站| 欧美电影一区二区三区| 另类小说综合欧美亚洲| 国产欧美精品区一区二区三区| 99在线精品视频| 日韩精品每日更新| 日本一区二区免费在线| 色婷婷亚洲一区二区三区| 日韩在线一区二区| 国产偷国产偷亚洲高清人白洁| 在线免费观看不卡av| 激情六月婷婷久久| 亚洲妇女屁股眼交7| 欧美激情资源网| 欧美电影影音先锋| 91捆绑美女网站| 国产一区二区美女诱惑| 亚洲你懂的在线视频| 精品久久久久久久久久久久包黑料 | 久久91精品久久久久久秒播| 欧美激情一区在线观看| 欧美三电影在线| 99久久er热在这里只有精品15| 精品亚洲国产成人av制服丝袜| 一区二区三区国产精品| 亚洲国产精品精华液ab| 欧美va天堂va视频va在线| 91视频免费观看| 国产v综合v亚洲欧| 视频一区在线播放| 亚洲欧美偷拍三级| 国产欧美日本一区二区三区| 91精品欧美一区二区三区综合在| 99r精品视频| 国产成都精品91一区二区三| 麻豆国产精品官网| 亚洲国产成人高清精品| 亚洲欧美激情小说另类| 国产精品日日摸夜夜摸av| 日韩免费观看2025年上映的电影| 欧美三级电影网站| 国产在线一区二区| 精品亚洲aⅴ乱码一区二区三区| 三级在线观看一区二区| 国产精品乱人伦一区二区| 久久噜噜亚洲综合| 国产视频一区二区在线观看| 精品久久人人做人人爽| 日韩视频一区在线观看| 日韩一级高清毛片| 国产色产综合色产在线视频| 在线免费不卡视频| 欧美精品 日韩| 色婷婷精品大视频在线蜜桃视频| 成人av在线一区二区三区| 国产aⅴ综合色| 成人黄色小视频在线观看| 国产成人精品免费在线| 国产成人在线看| 成人精品高清在线| 91尤物视频在线观看| 欧美午夜精品久久久久久超碰 | 欧美日本韩国一区二区三区视频 | 奇米影视一区二区三区小说| 色av综合在线| 日本韩国欧美三级| 色哟哟在线观看一区二区三区| 99久久婷婷国产综合精品电影| 不卡一区二区三区四区| 一区免费观看视频| 成人午夜在线视频| 亚洲国产高清aⅴ视频| 国产精品久久精品日日| 1000精品久久久久久久久| 一区二区三区在线不卡| 日本成人中文字幕| 国产精品女同一区二区三区| 中文字幕一区二区三区不卡在线| 亚洲高清视频的网址| 久久国产日韩欧美精品| 99久久精品国产毛片| 欧美日韩国产小视频在线观看| 日韩一区二区在线看片| 成人免费在线观看入口| 美女脱光内衣内裤视频久久网站 | 久久精品欧美一区二区三区不卡 | 国产在线日韩欧美| 色综合久久综合网97色综合 | 日韩欧美一级特黄在线播放| 国产精品久久久爽爽爽麻豆色哟哟 | 国产精品私人影院| 午夜电影一区二区| 精品在线播放免费| 欧美亚洲综合另类| 国产精品久99| 久久99久久久欧美国产| 91美女在线看| 国产精品一区二区三区99| 日本国产一区二区| 亚洲人吸女人奶水| 91女神在线视频| 亚洲国产精品成人综合| 91精品久久久久久久91蜜桃| 老司机免费视频一区二区| 久久综合九色欧美综合狠狠| 亚洲图片自拍偷拍| 精品播放一区二区| 日韩精品一二三区| 色八戒一区二区三区| 欧美一区二区在线免费观看| 91久久精品网| 天堂成人国产精品一区| 欧美色老头old∨ideo| 精品国精品国产尤物美女| 午夜激情综合网| 日韩精品专区在线影院观看| 午夜视频久久久久久| 99精品国产热久久91蜜凸| 日韩欧美一二三四区| 亚洲一区精品在线| 91在线精品一区二区| 一区二区成人在线| 欧美高清视频在线高清观看mv色露露十八 | 亚洲日本一区二区| 欧美久久久久久久久| 国产精品女同互慰在线看| 成人免费福利片| 亚洲综合一区二区精品导航| 91日韩在线专区| 自拍偷拍亚洲欧美日韩| av激情亚洲男人天堂| 最新国产精品久久精品| 成人99免费视频| 亚洲欧美在线另类| 色激情天天射综合网| 亚洲一区二区不卡免费| 91国偷自产一区二区使用方法| 国产精品69毛片高清亚洲| 一区二区三区四区视频精品免费 | 欧美美女一区二区| 8x8x8国产精品| 国产老肥熟一区二区三区| 午夜精品在线视频一区| 日韩精品中文字幕在线一区| 99re66热这里只有精品3直播| 亚洲成av人片一区二区三区| 欧美成人vps| 国产大陆亚洲精品国产| 国产综合成人久久大片91| 精品99一区二区| 亚洲夂夂婷婷色拍ww47 | 欧美久久高跟鞋激| 亚洲欧美日韩国产综合在线| 色狠狠色狠狠综合| 日韩激情在线观看| 国产精品久久久久影院| 色先锋aa成人| 国产一区二区美女| 洋洋成人永久网站入口| 久久久精品影视| 欧美精品aⅴ在线视频| 国产一区二区不卡老阿姨| 亚洲伊人色欲综合网| 久久综合色8888| 欧美绝品在线观看成人午夜影视| 盗摄精品av一区二区三区| 一区二区三区国产精品| 精品国产一二三| 国产欧美日韩麻豆91| 国产网红主播福利一区二区| 欧美二区三区91| 中文字幕欧美一| 国产精品综合视频| 日本人妖一区二区| 亚洲欧美一区二区三区国产精品 | 国内偷窥港台综合视频在线播放| 99视频精品在线| 欧美国产综合一区二区| 国产人成亚洲第一网站在线播放| 欧美韩日一区二区三区| 亚洲欧美日韩成人高清在线一区| 136国产福利精品导航| 午夜精品久久久久久久蜜桃app| 天天综合色天天综合| 成人av影视在线观看| 色综合激情久久| 91精品国产综合久久久久久久 | 日本高清不卡一区| 91网址在线看| 欧美性猛交xxxx乱大交退制版| 欧美伦理视频网站| eeuss影院一区二区三区| 日韩中文字幕91| 99re这里只有精品首页|