99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产成人综合网站| 亚洲黄网站在线观看| 精品一区二区在线视频| 欧美韩国日本不卡| 欧美日韩国产另类不卡| 成人免费黄色在线| 美国三级日本三级久久99| 国产精品少妇自拍| 91精品国产综合久久久久久| 91网站视频在线观看| 狠狠色丁香久久婷婷综合_中| 亚洲女女做受ⅹxx高潮| 国产无一区二区| 欧美zozozo| 538prom精品视频线放| 99久久伊人久久99| 久久99久久99| 国产精品国产三级国产普通话99 | 久久久国产一区二区三区四区小说 | 国产河南妇女毛片精品久久久| 亚洲一区二区三区三| 国产精品初高中害羞小美女文| 精品国产伦一区二区三区免费 | 国产日韩精品一区二区三区在线| 欧美成人一区二区三区| 3d动漫精品啪啪一区二区竹菊| 色噜噜狠狠色综合欧洲selulu| 成人午夜av电影| 成人av资源在线观看| 国产原创一区二区三区| 国产精品不卡在线| 国产欧美精品一区aⅴ影院 | 欧美高清性hdvideosex| 欧美日韩日日骚| 欧美日韩在线播放| 91精品欧美久久久久久动漫| 欧美精品乱码久久久久久| 99久久国产免费看| 99久久国产综合精品女不卡| 91在线一区二区| 欧美丝袜自拍制服另类| 在线观看视频一区二区| 欧美日韩国产高清一区二区| 精品久久国产字幕高潮| 一区二区三区四区乱视频| 蜜臀久久99精品久久久久宅男| 波多野结衣中文一区| 91精品国产一区二区三区香蕉| 国产精品每日更新在线播放网址| 人妖欧美一区二区| 色94色欧美sute亚洲线路二 | 国产精品69毛片高清亚洲| 在线观看日韩一区| 国产日韩亚洲欧美综合| 日韩电影在线免费观看| 色88888久久久久久影院按摩| 久久久久99精品国产片| 日韩精品电影一区亚洲| 99久久精品免费精品国产| 26uuu精品一区二区| 五月婷婷久久丁香| 欧美亚洲精品一区| 国产精品精品国产色婷婷| 国模一区二区三区白浆| 日韩视频中午一区| 丝袜亚洲另类欧美| 欧美日韩激情在线| 亚洲精品v日韩精品| 99精品热视频| 国产精品久久久久国产精品日日| 日本视频一区二区三区| 欧美性大战久久久久久久蜜臀| 国产精品久久久久久久久免费桃花 | 日av在线不卡| 欧美一区二区三区啪啪| 午夜视频一区二区三区| 在线观看免费亚洲| 亚洲午夜精品一区二区三区他趣| 不卡的电影网站| 1024精品合集| 91福利在线观看| 亚洲午夜精品久久久久久久久| 91影视在线播放| 亚洲精品免费播放| 欧美在线色视频| 亚洲成a人片在线不卡一二三区| 欧美伊人久久久久久午夜久久久久| 亚洲欧美乱综合| 欧洲精品一区二区三区在线观看| 亚洲一区二区在线免费看| 欧美伊人久久久久久久久影院| 亚洲一区二区精品久久av| 欧美视频一区二| 麻豆精品在线视频| 国产亚洲精品aa| 色综合色狠狠天天综合色| 亚洲宅男天堂在线观看无病毒| 欧美视频中文一区二区三区在线观看| 性久久久久久久| 精品播放一区二区| 不卡的av在线| 午夜成人在线视频| 久久久久久影视| 91丨porny丨蝌蚪视频| 亚洲国产一二三| 精品久久五月天| 91美女片黄在线| 麻豆91小视频| 中文字幕亚洲区| 欧美一区二区三区人| 成人一级黄色片| 亚洲sss视频在线视频| 久久精品免视看| 欧美日韩在线直播| 国产成人精品一区二区三区网站观看| 成人免费视频在线观看| 91.麻豆视频| 99久久国产综合精品色伊| 日韩电影免费一区| 欧美激情一区三区| 欧美群妇大交群的观看方式| 国产一区二区电影| 亚洲人成网站精品片在线观看| 91麻豆精品国产91久久久使用方法| 精品一区二区三区香蕉蜜桃 | 亚洲激情图片小说视频| 日韩视频在线你懂得| www.欧美日韩| 亚洲va天堂va国产va久| 日本一区二区三区电影| 欧美日韩国产精选| 99久久精品情趣| 国产一区二区三区香蕉| 夜夜嗨av一区二区三区四季av| 久久久欧美精品sm网站| 欧美一三区三区四区免费在线看| 99久久精品免费观看| 麻豆精品精品国产自在97香蕉 | 美女网站一区二区| 亚洲国产wwwccc36天堂| 中文字幕亚洲区| 久久精品水蜜桃av综合天堂| 日韩一卡二卡三卡国产欧美| 欧美午夜精品久久久| 波多野结衣视频一区| 国产精品中文字幕日韩精品| 日韩专区一卡二卡| 洋洋成人永久网站入口| 亚洲色图色小说| 日韩一区中文字幕| 中文字幕一区二区视频| 中文字幕精品一区二区三区精品| 精品91自产拍在线观看一区| 日韩免费高清电影| 日韩三级免费观看| 精品美女被调教视频大全网站| 91精品国产一区二区三区香蕉| 欧美色图片你懂的| 欧美日韩午夜影院| 欧美日韩精品欧美日韩精品| 91久久精品日日躁夜夜躁欧美| 99国产精品一区| 99久久精品免费看| 91麻豆国产精品久久| 色综合天天综合在线视频| 一本久久a久久精品亚洲| 97精品电影院| 色婷婷综合五月| 欧美色精品天天在线观看视频| 欧美在线免费视屏| 日韩午夜电影av| 久久综合久久鬼色中文字| 久久久国产精华| 一区在线播放视频| 亚洲图片欧美综合| 久久精品噜噜噜成人88aⅴ | 69堂亚洲精品首页| 欧美成人一区二区三区片免费| 久久免费美女视频| 中文字幕综合网| 亚洲一区二区精品3399| 日本成人在线电影网| 国产一区二区伦理| 99久久免费视频.com| 欧美精品久久久久久久久老牛影院| 欧美一级欧美一级在线播放| 久久久久综合网| 亚洲日本在线天堂| 日韩电影在线观看电影| 国产成人自拍网| 欧美日韩久久久| 国产女同性恋一区二区| 亚洲精品福利视频网站| 蜜臀av性久久久久蜜臀aⅴ | 亚洲成年人影院| 国产一区二区在线观看视频| 91色porny蝌蚪| 欧美zozozo| 亚洲国产日韩精品| 成人深夜在线观看|