99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

BUSI1125代做、代寫(xiě)Java/python程序語(yǔ)言

時(shí)間:2023-12-23  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



BUSI1125 Softwares and Tools for Data Analytics
INDIVIDUAL ASSIGNMENT
Autumn 2023/24

This individual assignment carries 100% of the total marks of this module.

Students are required to download 2 different datasets, and analyse each dataset using a
randomly assigned data analytics software.


Dataset 1 (poverty): Eradicating extreme poverty for all people everywhere by 2030 is a
pivotal goal of the 2030 Agenda for Sustainable Development. It has been recognised that
ending poverty must go hand-in-hand with strategies that build economic growth and address
a range of social needs including education, health, social protection, and job opportunities,
while tackling climate change and environmental protection. As a data analyst your objective
is to conduct an exploratory analysis to better understand the relationships/associations
between the level of income (outcome) and the selected socio-economic factors (features).

Dataset 1, extracted from the World Bank Development Indicators, includes the following
variables for 151 countries.

Variable Name Description
country Name of the country
region Region of the country
comp_edu Compulsory education, duration (years)
female_labour Ratio of female to male labour force participation rate (%)
agri_value_added Agriculture, forestry, and fishing, value added (% of GDP)
political_stability Political Stability and Absence of Violence/Terrorism: Estimated index
income_group Income group classification by the World Bank based on gross national
income (GNI) per capita (High income, Upper-middle income, Lower-
middle income, Low income)
Dataset 1 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/poverty/main/poverty.csv


Dataset 2 (wage): One of the other UN Sustainable Development Goals is about promoting
inclusive and sustainable economic growth, employment and decent work for all (Decent work
and Economic Growth). Decent work means opportunities for everyone to get work that is
productive and delivers a fair income, security in the workplace and social protection for
families, better prospects for personal development and social integration. As a data analyst
your objective is to conduct an exploratory analysis to better understand the
relationships/associations between the individual’s wage (outcome) and the selected
demographic factors (features).

Dataset 2, extracted from The United States National Longitudinal Surveys, includes the
following variables for 935 individuals.

Variable Name Description
wage Average weekly earnings (in US$)
hours Average weekly working hours
exper Years of working experience
age Age in years
marital Marital status (Married, Single)
gender Gender (Male, Female)
education Level of education (High School, College, Graduate, Post-Graduate)

Dataset 2 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/wage/main/wage.csv



Assignment requirements
Students are required to import the dataset and analyse with the assigned software (R or
Python). For descriptive and exploratory analytics and interpretations, students are required
to:

1. check data quality issues (missing values, data entry errors, inconsistencies, etc.),
perform necessary data cleansing, and briefly explain your data cleaning strategy.
2. identify the type of variables, provide appropriate summary statistics (all measures of
location and dispersion and frequencies) of each variables with appropriate
visualisations and interpretations.
3. identify the objectives of analytics based on the given dataset and scenario and identify
the relevant/appropriate relationships/associations between the outcome and feature
variables, conduct exploratory analysis with appropriate visualisations, and present
and interpret the analyses (based on DIKW pyramid).
4. write up a data analytics report with clear and effective communication.

The 1500-word assignment should include the following two sub-sections.
 Section 1: Report of descriptive and exploratory analytics of Dataset 1 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)
Section 2: Report of descriptive and exploratory analytics of Dataset 2 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)


Students are also required to submit R-scripts and Jupyter Notebook files via Moodle
submission box.

Deadline Date for Submission of Coursework
Your coursework needs to be submitted electronically via the Module Moodle page. See the
Student Services website and the programme handbook for further details of this process.
The deadline for coursework submission is 3:30pm on Wednesday, 27th of December
2023. Late submission will attract marks deduction penalty unless an extension has been
approved by Student Services. Please familiarise yourself with the extenuating circumstances
policy and process for submitting a claim.

Five marks will be deducted for each working day (or part thereof) if coursework is submitted
after the official deadline without an extension having been obtained. Except in exceptional
circumstances, late submission penalties will apply automatically unless a claim for
extenuating circumstances is made before the assessment deadline.


Coursework Submission Requirements:
A maximum word count of the assignment is 1500 words and must be adhered to.
The penalty for exceeding this limit is a five mark deduction for exceeding up to 300
words, 10 marks deduction for exceeding between 301 and 500 words, and 15
marks reduction for exceeding over 501 words.
The actual word count of the assignment must be stated by the student on the first
page (cover sheet) of the assignment.
The overall word count does include citations and quotations.
The overall word count does not include the references or bibliography at the
end of the coursework.
 The word count does not include figures and tables with numeric values and the titles
of figure and table. Any statement, interpretation, and explanation presented in
a figure or a tabular form will be included in the overall wordcount,
Appendices (mostly supporting materials that are not directly related to the assignment
and will not be considered in marking) are not included in the overall word count.
Students should prepare and submit their coursework assessments via Moodle in
the following format:
Font: Verdana 11 point
Spacing: 1.5 spaced
Margins: Normal (2.5 cm)
Referencing: Harvard citation style

Plagiarism will not be tolerated. Please consult the Business School Undergraduate Student
Handbook for more guidelines on how to present and submit your essays. It is the strong
advice of the Business School that you should avoid plagiarism by engaging in ethical and
professional academic practice.
In accordance with the University’s Quality Manual, in normal circumstances, marked
coursework and associated feedback will be returned to you within 15 working days of the
published submission deadline. Therefore, students submitting work before the published
deadline should not have an expectation that early submission will result in earlier return of
work. Where coursework will not be returned within 15 working days for good reason (for
example in circumstances where a student has been granted an extension, illness of module
convenor, or lengthy pieces of coursework), students will be informed of the timescale for the
return of the coursework and associated feedback.
Additional circumstances where coursework may not be returned within 15 working days for
good reason can include the University closure dates. Therefore, where this applies, you will
be informed in advance of the date coursework feedback will be provided to you.
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:公認(rèn)口碑最好的十大莆田微商,推薦十個(gè)知名的莆田鞋商家
  • 下一篇:代寫(xiě)公式指標(biāo) 代做選股公式 請(qǐng)人做股標(biāo)指標(biāo)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                在线免费观看视频一区| 欧美日韩精品一区视频| 欧美日韩国产免费一区二区| 亚洲.国产.中文慕字在线| 欧美日韩精品系列| 国产综合久久久久影院| 国产精品理论片在线观看| 欧美日精品一区视频| 捆绑调教美女网站视频一区| 国产精品美女久久久久久久网站| 91激情五月电影| 精品亚洲国产成人av制服丝袜| 中文字幕久久午夜不卡| 91精品国产入口| 成人h动漫精品一区二| 日本成人在线电影网| 国产精品人妖ts系列视频| 91精品国产高清一区二区三区| 丁香网亚洲国际| 美女在线一区二区| 一区二区三区四区精品在线视频| 欧美videos大乳护士334| 日本道免费精品一区二区三区| 国内精品嫩模私拍在线| 婷婷夜色潮精品综合在线| **性色生活片久久毛片| 久久久影院官网| 9191国产精品| 91美女片黄在线| 成人毛片在线观看| 国产真实乱偷精品视频免| 丝袜美腿亚洲综合| 亚洲综合丝袜美腿| 中文字幕在线观看一区二区| 欧美草草影院在线视频| 91麻豆精品国产自产在线| 日本高清免费不卡视频| 成人激情图片网| 青青草原综合久久大伊人精品优势| 亚洲欧洲日韩女同| 欧美激情在线免费观看| 国产亚洲欧美色| 久久久午夜电影| 精品国产成人在线影院| 69堂精品视频| 欧美一级二级三级乱码| 欧美久久久久久蜜桃| 欧美三级日本三级少妇99| 日本韩国精品一区二区在线观看| 99九九99九九九视频精品| 成人在线一区二区三区| 久久嫩草精品久久久久| 亚洲综合偷拍欧美一区色| 国产精品无遮挡| 国产精品人成在线观看免费| 久久久.com| 国产精品护士白丝一区av| 中文字幕+乱码+中文字幕一区| 久久精品一区二区三区av| 国产精品网曝门| 亚洲精选在线视频| 亚洲欧洲精品一区二区三区| 亚洲日本va在线观看| 一区二区三区精品视频| 视频一区欧美精品| 蜜臀久久99精品久久久久久9| 麻豆精品视频在线观看| 韩国理伦片一区二区三区在线播放 | 日韩精彩视频在线观看| 日韩高清在线观看| 国产精品一区二区久久精品爱涩| 国产伦精品一区二区三区在线观看 | 亚洲精品在线免费播放| 欧美精品一区二区三区四区| 欧美激情中文字幕一区二区| 亚洲免费视频成人| 亚洲国产精品麻豆| 韩国av一区二区三区| 国产一区二区成人久久免费影院| 99久久国产综合精品麻豆| 欧美午夜免费电影| 久久亚洲春色中文字幕久久久| 国产视频亚洲色图| 亚洲一区二区三区四区在线观看| 日本不卡视频在线观看| 国产精品资源在线看| 色噜噜狠狠一区二区三区果冻| 日韩欧美在线一区二区三区| 中文字幕视频一区| 久久99久久精品欧美| 91丨九色丨蝌蚪富婆spa| 欧美美女bb生活片| 国产精品久久久久久户外露出| 午夜精品爽啪视频| 99精品视频中文字幕| 欧美一区二区三区男人的天堂| 中文字幕精品在线不卡| 人人超碰91尤物精品国产| 成人黄色av网站在线| 91精品国产乱码久久蜜臀| 国产精品久久久久aaaa| 久久99精品视频| 欧美午夜影院一区| 一区二区中文视频| 国产一区二区三区精品视频| 欧洲精品在线观看| 亚洲国产激情av| 日本欧美韩国一区三区| 欧美日韩免费一区二区三区视频 | 亚洲成人在线观看视频| 99久久综合国产精品| 欧美v日韩v国产v| 日日摸夜夜添夜夜添国产精品 | 久草中文综合在线| 欧美在线小视频| 亚洲美女淫视频| 成人听书哪个软件好| 久久精品一区四区| 久久国产欧美日韩精品| 日韩欧美在线综合网| 日韩电影在线观看网站| 欧美乱妇15p| 亚洲大片精品永久免费| 91激情在线视频| 一区二区三区欧美激情| 91污在线观看| 亚洲精品水蜜桃| 在线精品观看国产| 夜夜嗨av一区二区三区网页| 在线视频观看一区| 一区二区视频在线| 欧美午夜一区二区三区| 午夜免费久久看| 欧美欧美欧美欧美| 麻豆精品一区二区| 国产欧美视频一区二区三区| 国产精品一区二区视频| 成人欧美一区二区三区白人| 99r精品视频| 亚洲午夜精品17c| 91麻豆精品国产无毒不卡在线观看 | 日韩福利视频导航| 大胆亚洲人体视频| 亚洲女子a中天字幕| 欧美视频一区二| 免费看日韩a级影片| 欧美大度的电影原声| 国产大片一区二区| 亚洲免费电影在线| 4438成人网| 波多野结衣中文一区| 亚洲国产精品久久人人爱| 欧美丰满少妇xxxbbb| 国产精品主播直播| 伊人婷婷欧美激情| 精品国产制服丝袜高跟| 97se亚洲国产综合在线| 欧美大片在线观看一区二区| 一片黄亚洲嫩模| 欧美va亚洲va国产综合| av成人老司机| 免费人成在线不卡| 亚洲欧美激情插| 欧美一区二区三区免费视频 | 天天色 色综合| 久久久久免费观看| 久久精品日韩一区二区三区| 久久精品国产精品亚洲红杏| 精品国产乱码久久久久久免费| 国产伦精品一区二区三区视频青涩| 欧美一二三区在线| 国产成人免费在线观看不卡| 亚洲欧美日韩精品久久久久| 国产在线观看一区二区| 亚洲国产欧美在线| 欧美高清在线精品一区| 欧美日韩午夜影院| 99热精品一区二区| 精品午夜久久福利影院| 亚洲国产精品视频| 亚洲免费观看在线观看| 国产三级一区二区| 日韩一区二区三区观看| 在线观看三级视频欧美| 不卡的看片网站| 国产伦精品一区二区三区在线观看| 日本不卡视频在线| 亚洲综合免费观看高清完整版在线| 精品精品国产高清a毛片牛牛| 欧美丝袜自拍制服另类| 91视频免费看| 国产精品白丝jk白祙喷水网站| 欧美96一区二区免费视频| 日韩电影在线免费| 亚洲va欧美va人人爽| 亚洲精品成人少妇| 成人欧美一区二区三区黑人麻豆| 国产色一区二区| 久久久久99精品国产片| 久久久久99精品国产片|