99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 Scene Recognition

時間:2024-01-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2 (Group) – Scene Recognition
Brief
This is a group coursework: please work in teams of four people.
Due date: Wednesday 10th January, 16:00.
Development data download: training.zip in the coursework (CW) folder
Testing data download: testing.zip in the CW folder
Required files: report.pdf; code.zip; run1.txt; run2.txt; run3.txt
Credit: 25% of overall module mark
Overview
The goal of this project is to introduce you to image recognition. Specifically, we will examine the
task of scene recognition starting with very simple methods -- tiny images and nearest neighbour
classification -- and then move on to techniques that resemble the state-of-the-art.
This coursework will run following the methodology used in many current scientific benchmarking
competitions/evaluations. You will be provided with a set of labelled development images from
which you are allowed to develop and tune your classifiers. You will also be provided with a set of
unlabelled images for which you will be asked to produce predictions of the correct class.
Details
You will need to write software that classifies scenes into one of 15 categories. We want you to
implement three different classifiers as described below. You will then need to run each classifier
against all the test images and provide a prediction of the class for each image.
Data
The training data consists of 100 images for each of the 15 scene classes. These are arranged in
directories named according to the class name. The test data consists of 2985 images. All the
images are provided in JPEG format. All the images are grey-scale, so you don't need to consider
colour.
Objective measure
The key classification performance indicator for this task is average precision; this is literally the
proportion of number of correct classifications to the total number of predictions (i.e. 2985).
Run conditions
As mentioned above, you need to develop and run three different classifiers. We'll refer to the
application of a classifier to the test data as a "run".
Run #1: You should develop a simple k-nearest-neighbour classifier using the "tiny image" feature.
The "tiny image" feature is one of the simplest possible image representations. One simply crops
each image to a square about the centre, and then resizes it to a small, fixed resolution (we
recommend 16x16). The pixel values can be packed into a vector by concatenating each image
row. It tends to work slightly better if the tiny image is made to have zero mean and unit length.
You can choose the optimal k-value for the classifier.
Run #2: You should develop a set of linear classifiers (an ensemble of 15 one-vs-all classifiers)
using a bag-of-visual-words feature based on fixed size densely-sampled pixel patches. We
recommend that you start with 8x8 patches, sampled every 4 pixels in the x and y directions. A
sample of these should be clustered using K-Means to learn a vocabulary (try ~500 clusters to
start). You might want to consider mean-centring and normalising each patch before
clustering/quantisation. Note: we're not asking you to use SIFT features here - just take the pixels
from the patches and flatten them into a vector & then use vector quantisation to map each patch
to a visual word.
Run #3: You should try to develop the best classifiers you can! You can choose whatever feature,
encoding and classifier you like. Potential features: the GIST feature; Dense SIFT; Dense SIFT in a
Gaussian Pyramid; Dense SIFT with spatial pooling (commonly known as PHOW - Pyramid
Histogram of Words), etc. Potential classifiers: Naive bayes; non-linear SVM (perhaps using a linear
classifier with a Homogeneous Kernel Map), ...
Run prediction format
The predictions for each run must be written to a text file named runX.txt (where X is the run
number) with the following format:
For example:
<image_name> <predicted_class>
<image_name> <predicted_class>
<image_name> <predicted_class>
...
0.jpg tallbuilding
1.jpg forest
2.jpg mountain
3.jpg store
4.jpg store
5.jpg bedroom
...
Restrictions
• You are not allowed to use the testing images for anything other than producing the final
predictions They must not be used for either training or learning feature encoding.
The report
The report must be no longer than 4 sides of A4 with the given Latex format for CW2, and must be
submitted electronically as a PDF. The report must include:
• The names and ECS user IDs of the team members
• A description of the implementation of the classifiers for the three runs, including information on
how they were trained and tuned, and the specific parameters used for configuring the feature
extractors and classifiers. We expect that your "run 3" section will be considerably longer than the
descriptions of runs 1 & 2.
• A short statement detailing the individual contributions of the team members to the coursework.
What to hand in
You need to submit to ECS Handin the following items:
• The group report (as a PDF document in the CVPR format same as CW2; max 4 A4 sides, no
appendix)
• Your code enclosed in a zip file (including everything required to build/run your software and to
train and use your classifiers; please don't include binaries or any of the images!)
• The run prediction files for your three runs (named "run1.txt", "run2.txt" and "run3.txt").
• A plain text file listing the user ids (e.g. xx1g20) of the members of your team; one per line.
Marking and feedback
Marks will be awarded for:
• Successful completion of the task.
• Well structured and commented code.
• Evidence of professionalism in implementation and reporting.
• Quality and contents of the report.
• The quality/soundness/complexity of approach used for run 3.
Marks will not be based on the actual performance of your approach (although you can expect to
lose marks if runs 1 and 2 are way off our expectations or you fail to follow the submission
instructions). We will open the performance rankings for run 3. !"#$
Standard ECS late submission penalties apply.
Individual feedback will be given to each team covering the above points. We will also give overall
feedback on the approaches taken in class when we announce the winner!
Useful links
• Matlab
o Image processing toolbox tutorials
o Recommended: VLFeat
§ Example of using VLFeat to perform classification
o Linear and non-linear SVMs
• Python
o numpy, PIL, sklearn (Scikit-learn), OpenCV, etc.
• C and C++
o OpenCV
o Recommended: VLFeat
o Example of using VLFeat to perform classification (Note this code is Matlab, but most of the
functionality is available in the C/C++ API)
• Java
o Recommended: OpenIMAJ
§ Chapter 12 of the tutorial deals with image classification
o BoofCV
Questions
If you have any problems/questions, use the Q&A channel on Teams 

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP3173 23F&#160;代寫、代做 C++設計程序
  • 下一篇:代寫文華策略 代寫開拓者量化交易 代編金字塔公式
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩国产不卡| 精品入口麻豆88视频| 国产精品乱人伦一区二区| 蜜臀久久久久久久| 人禽交欧美网站| 亚洲女爱视频在线| 国产女主播视频一区二区| 69成人精品免费视频| 极品少妇xxxx偷拍精品少妇| 亚洲精品伦理在线| 日韩一区二区三区免费看| 91精品国产综合久久福利软件| 色综合久久综合| 国产风韵犹存在线视精品| 日本系列欧美系列| 亚洲一区二区中文在线| 亚洲卡通欧美制服中文| 中文字幕日韩av资源站| 国产欧美视频在线观看| 久久嫩草精品久久久精品一| 欧美成人一级视频| 欧美精品一二三四| 欧美日韩国产电影| 精品1区2区3区| 成人免费的视频| 色综合色综合色综合色综合色综合| 国产成人免费视频网站| 国产黄色成人av| 成人一道本在线| 成人国产精品视频| 欧美日韩精品一区二区三区蜜桃| 欧美午夜影院一区| 欧美美女黄视频| 欧美一级午夜免费电影| 91精品婷婷国产综合久久竹菊| 欧美在线你懂的| 精品处破学生在线二十三| 久久精品综合网| 日本一区二区三区四区| 亚洲色图视频网| 亚洲天堂成人网| 国产精品久久毛片a| 日韩美女久久久| 麻豆91免费看| 91成人免费网站| 久久久久国产精品人| 一级做a爱片久久| 国产jizzjizz一区二区| 欧美日韩在线综合| 中文字幕日韩一区| 国产成人亚洲综合a∨婷婷| 88在线观看91蜜桃国自产| 国产精品久久久久一区| 九九九精品视频| 欧美精品久久一区二区三区| 中文字幕五月欧美| 国产美女av一区二区三区| 欧美麻豆精品久久久久久| 亚洲欧美另类久久久精品2019| 国内精品写真在线观看| 91精品欧美久久久久久动漫 | 91丨porny丨国产| 久久久av毛片精品| 日本伊人色综合网| 欧美日韩国产免费一区二区| 亚洲黄网站在线观看| 成人免费黄色在线| 欧美激情一区二区三区蜜桃视频 | 91精品国产综合久久久久久| 成人欧美一区二区三区| 懂色av噜噜一区二区三区av| 久久先锋影音av鲁色资源| 欧美aⅴ一区二区三区视频| 欧美性受xxxx| 亚洲国产综合91精品麻豆| 91蜜桃免费观看视频| 中文无字幕一区二区三区| 美女网站视频久久| 日韩一级片在线观看| 蜜臀av性久久久久av蜜臀妖精| 欧美三级电影在线观看| 一区二区三区日韩欧美| 色综合天天综合色综合av| 亚洲欧美综合色| 色悠久久久久综合欧美99| 亚洲精品视频一区| 在线观看区一区二| 久久亚洲影视婷婷| 韩国毛片一区二区三区| 久久久久国产一区二区三区四区 | 在线观看国产日韩| 亚洲激情图片一区| 欧美精品欧美精品系列| 蜜臀av性久久久久蜜臀av麻豆| 91精品国产乱| 国产毛片精品视频| 成人免费小视频| 欧美一a一片一级一片| 日韩va亚洲va欧美va久久| 国产一区在线不卡| 国产精品毛片a∨一区二区三区| 国产精品一二三在| 亚洲欧洲美洲综合色网| 一本高清dvd不卡在线观看| 尤物在线观看一区| 欧美久久久久久蜜桃| 国产在线播放一区三区四| 亚洲国产精品v| 91免费版在线| 日韩高清中文字幕一区| 日韩福利视频网| 久久一区二区三区四区| 色综合久久中文字幕| 秋霞电影一区二区| 亚洲欧洲三级电影| 91精品国产福利| 成人av在线看| 日本vs亚洲vs韩国一区三区二区| 久久天天做天天爱综合色| 在线中文字幕一区| 久草热8精品视频在线观看| 亚洲欧洲一区二区三区| 欧美日韩1区2区| 国产suv精品一区二区6| 亚洲电影视频在线| 国产精品色婷婷久久58| 91精品福利在线一区二区三区| 成人ar影院免费观看视频| 日韩精品一级二级| 亚洲欧洲一区二区在线播放| 日韩欧美激情四射| 91国偷自产一区二区三区观看 | 偷窥国产亚洲免费视频| 久久综合久久99| 欧美日韩精品免费观看视频| 国产mv日韩mv欧美| 黄色日韩网站视频| 亚洲一区二区三区四区在线免费观看 | 久久99精品久久久久婷婷| 亚洲三级在线免费观看| 久久午夜电影网| 日韩欧美国产综合| 欧美男人的天堂一二区| 一本久久a久久精品亚洲| 国产精品亚洲成人| 国产一区在线精品| 激情综合一区二区三区| 日本成人在线视频网站| 亚洲午夜国产一区99re久久| 亚洲图片欧美激情| 国产精品久久久久久久久快鸭 | 欧美变态tickling挠脚心| 在线看一区二区| k8久久久一区二区三区| 国产激情视频一区二区在线观看| 蜜桃视频一区二区| 日韩av在线发布| 午夜视频一区二区| 亚洲国产成人porn| 亚洲一区二区三区免费视频| 亚洲精品伦理在线| 亚洲精选视频在线| 亚洲精品视频观看| 亚洲精品老司机| 亚洲va韩国va欧美va| 亚洲一二三区不卡| 亚洲不卡在线观看| 日本不卡视频在线| 国内精品不卡在线| 国产成人精品免费网站| 成人小视频免费观看| 99久久精品国产一区| 日本精品一区二区三区高清| 色综合激情久久| 欧美日韩另类一区| 精品精品欲导航| 国产亚洲精品超碰| 一区二区三区蜜桃| 蜜臀av性久久久久蜜臀aⅴ流畅 | 在线播放日韩导航| 日韩一区二区三区精品视频| 日韩欧美高清一区| 国产色综合一区| 亚洲精品免费播放| 免费在线成人网| 国产很黄免费观看久久| 色婷婷综合久久久久中文一区二区 | 色哟哟在线观看一区二区三区| 91啦中文在线观看| 欧美日韩国产一级二级| 91精品国产欧美一区二区成人| 2023国产一二三区日本精品2022| 国产日韩综合av| 亚洲最大成人综合| 精品一区二区在线播放| av中文一区二区三区| 欧美乱妇一区二区三区不卡视频 | 国产欧美一区二区精品忘忧草| 亚洲欧美中日韩| 日韩av电影免费观看高清完整版 |