99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

 ACADEMIC代做、代寫SQL設計編程

時間:2024-01-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



College of Arts, Technology and Environment 
ACADEMIC YEAR 2023/24 
 
Assessment Brief 
Submission and feedback dates 

Submission deadline:    Before 14:00 on 18/01/2024 
This is an individual assessment task eligible for a 48 hour late submission window. 

Marks and Feedback due on: 14/02/2024 
N.B. all times are 24-hour clock, current local time (at time of submission) in the UK 

Submission details:
Module title and code:    UFCFLR-15-M Data Management Fundamentals         

Assessment type:    Database Design and Implementation Task 

Assessment title:        Modelling & Mapping Bristol Air Quality Data         

Assessment weighting:    50% of total module mark 

Size or length of assessment: N/A  

Module learning outcomes assessed by this task: 

Main Learning Goals & Outcomes (from the Module Specification)
oUnderstand and use the relational model to structure data for efficient and effective storage and retrieval.
oDesign, develop and validate a range of data models and schemas.
oUnderstand, evaluate and apply a range of data query and manipulation languages and frameworks.
Additional Learning Outcomes (from the Module Specification)
oConstructing and reverse-engineering entity relationship models.
oUnderstanding and applying data normalisation.
oNoSQL [data formats and understanding the difference] to RDBMS.

oLearn and use the MARKDOWN  markup syntax.

Assignment background & context
Measuring Air Quality
Levels of various air borne pollutants such as Nitrogen Monoxide (NO), Nitrogen Dioxide (NO2) and particulate matter (also called particle pollution) are all major contributors to the measure of overall air quality.
For instance, NO2 is measured using micrograms in each cubic metre of air (㎍/m3). A microgram (㎍) is one millionth of a gram. A concentration of 1 ㎍/m3 means that one cubic metre of air contains one microgram of pollutant.
To protect our health, the UK Government sets two air quality objectives for NO2 in their Air Quality Strategy
1.The hourly objective, which is the concentration of NO2 in the air, averaged over a period of one hour.
2.The annual objective, which is the concentration of NO2 in the air, averaged over a period of a year.
The following table shows the colour encoding and the levels for Objective 1 above, the mean hourly ratio, adopted in the UK.
Index    1    2    3    4    5    6    7    8    9    10
Band    Low    Low    Low    Moderate    Moderate    Moderate    High    High    High    Very High
㎍/m³    0-67    68-134    135-200    20**267    268-334    335-400    40**467    468-534    535-600    601 or more
Further details of colour encodings and health warnings can be found at the DEFRA Site.

The Input Data
The following ZIP file provides data ranging from 1993 to 22 October 2023 taken from 19 monitoring stations in and around Bristol.
Download & save the data file:  Air_Quality_Continous.zip (23.2 Mb)
Create a directory (folder) called “data” on your working machine and unzip the file there to Air_Quality_Continuous.csv (112 Mb).
Monitors may suffer downtime and may become defunct, so the data isn’t always complete for all stations.
Shown here is the first 8 lines of the file (cropped):

Note the following:
There are 19 stations (monitors):
188 => 'AURN Bristol Centre', 51.4572041156,-2.58564914143
203 => 'Brislington Depot', 51.4417**1802,-2.5599558**24
206 => 'Rupert Street', 51.4554331987,-2.59626237**4
209 => 'IKEA M**', 51.**528**609,-2.56207998299
213 => 'Old Market', 51.4560189999,-2.5834894**26
215 => 'Parson Street School', 51.4**675707,-2.604956656**
228 => 'Temple Meads Station', 51.4488837041,-2.584**776241
270 => 'Wells Road', 51.4278638883,-2.56374153315
271 => 'Trailer Portway P&R', 51.4899934596,-2.68877856929
375 => 'Newfoundland Road Police Station', 51.4606**8207,-2.58225341824
395 => "Shiner's Garage", 51.4577930**4,-2.56271419977
452 => 'AURN St Pauls', 51.4628294172,-2.58454**35
4** => 'Bath Road', 51.4425372726,-2.571375360**
459 => 'Cheltenham Road \ Station Road', 51.4689385**1,-2.5927241667
463 => 'Fishponds Road', 51.**80449714,-2.5**3027459
481 => 'CREATE Centre Roof', 51.4**213417,-2.622**405516
500 => 'Temple Way', 51.45794971** ,-2.58398****3
501 => 'Colston Avenue', 51.4552693827,-2.59664882855
672 => 'Marlborough Street', 51.4591419717,-2.5954**71836
These monitors are spread across the four City of Bristol constituencies represented by the following Members of Parliament (MP's):
oBristol East - Kerry McCarthy (MP);
oBristol Northwest - Darren Jones (MP);
oBristol South - Karin Smyth (MP); &
oBristol West - Thangam Debbonaire (MP).
Each line represents one reading from a specific detector. Detectors take one reading every hour. If you examine the file using a programming editor, (Notepad++ can handle the job), you can see that the first row gives headers and there are another 1603492 (1.60 million+) rows (lines). There are 19 data items (columns) per line.
The schema for data (what each field represents) is given below:
measure    desc    unit
Date Time    Date and time of measurement    datetime
SiteID     Site ID for the station     integer
NOx     Concentration of oxides of nitrogen     ㎍/m3
NO2     Concentration of nitrogen dioxide     ㎍/m3
NO    Concentration of nitric oxide     ㎍/m3
PM10    Concentration of particulate matter <10 micron diameter    ㎍/m3
O3    Concentration of ozone Concentration of non - volatile particulate matter <10 micron diameter    ㎍/m3
Temperature     Air temperature    °C
ObjectID    Object (?)    Integer
ObjectID2    Object (?)    Integer
NVPM10    Concentration of non - volatile particulate matter <10 micron diameter    ㎍/m3
VPM10    Concentration of volatile particulate matter <10 micron diameter    ㎎/m3
NVPM2.5    Concentration of non volatile particulate matter <2.5 micron diameter    ㎍/m3
PM2.5    Concentration of particulate matter <2.5 micron diameter    ㎍/m3
VPM2.5    Concentration of volatile particulate matter <2.5 micron diameter    ㎍/m3
CO    Concentration of carbon monoxide    ㎎/m3
RH    Relative Humidity    %
Pressure    Air Pressure    mbar
SO2    Concentration of sulphur dioxide    ㎍/m3

Completing your assessment  

What am I required to do on this assessment? 

This is an individual assessment task requiring you to design, implement and populate a relational DB (MySQL) using open data (pollution levels in Bristol).

You are then required to design and run several SQL queries against the extracted (cropped) data set.  

Additionally, you are required to produce a report (in markdown format) describing the research undertaken, a prototype implementation (using a small sample of the dataset) and at least one example query in the NoSQL database of your choice. This report should also discuss the use cases and justification of using de-normalised (NoSQL) data models in contrast to normalised (relational) data models.

Finally, you should produce a short report (less than 600 words and again in markdown format) explaining the overall process undertaken, any issues and resolutions and the learning outcomes you have achieved. 

Your submission should consist of a single ZIP file dmf-assign.zip  containing all files and the two reports as specified in this brief. 

Where should I start? 

This assignment consists of seven tasks. This is the task breakdown: 
Task 1:  Organize and model the data (10 marks):
Group the detectors by constituency and design a normalised Entity Relationship (ER) model which models all the data items.
Note that this model should be a "no loss" model - that is, with the required entities holding all the attributes from all the derived entities. 
All relationships should be clearly defined and enumerated.
Submission file: An ER diagram pollution-er.png.
Task 2:  Forward engineer the ER model to a MySQL database (10 marks):
Using MySQL Workbench and/or PhpMyAdmin, create the required tables and fields to hold the data. All primary and foreign key attributes should be defined, and all fields should have the appropriate (required) data type.
Submission file: A download of a SQL file as pollution.sql showing all table and attribute definitions.
Task 3:  Crop and cleanse the data (10 + 6 marks):
i) Crop the dataset to hold only the data from 1st January 2015 on; (5 marks);
ii) Cleanse the cropped dataset to ensure that all dates fall between 1st January 2015 and 22nd October 2023. (5 marks)

An extra 6 marks are available if you can accomplish the above two tasks using PYTHON code.

Submission file/s: A ZIP file cropped.zip holding the cropped and cleansed data. Additionally and possibly, a PYTHON script called cropped.py that accomplishes the above tasks.

Task 4:  Populate the MySQL database tables with the extracted/reduced dataset created in the previous task (10 + 6 marks):

USE PhpMyAdmin’s “import CSV” feature or MySQL's “LOAD DATA INFILE” statement to import the cropped & cleansed dataset into the MySQL tables implementation completed in Task 2 (10 marks).

You can make use of the following guides:
- Import CSV file data into MySQL table with phpMyAdmin;
- Import CSV File Into MySQL Table.

An extra 6 marks are available if you can accomplish the above data mapping task using PYTHON code.

Submission file/s: A screen capture readings.png showing the first 12 records of the main readings file.
Additionally and possibly, a PYTHON script called import.py that accomplishes the above task.

Task 5: Design, write and run SQL queries (12 marks):

Write and implement (test run) the following four SQL queries:

i) Return the date/time, station name and the highest recorded value of nitrogen oxide (NOx) found in the dataset for the year 2022. (4 marks)

ii) Return the mean values of PM2.5 (particulate matter <2.5 micron diameter) & VPM2.5 (volatile particulate matter <2.5 micron diameter) by each station for the year 2022 for readings taken on or near 08:00 hours (peak traffic intensity). (4 marks)

iii) Extend the previous query to show these values for all stations for all the data. (4 marks)
Model the data for a specific monitor (station) to a NoSQL data model (key-value, xml or graph) to implement the selected database type/product & pipe or import the data.
Submission files: Code listing of the three SQL queries query-a.sql, query-b.sql & query-c.sql.
Task 6: Model, implement and query a selected NoSQL database. (24 marks)
Model the data for a specific monitor (station) to a NoSQL data model (key-value, xml, timeseries or graph) to implement the selected database type/product & pipe or import a small sample of the data. You should also implement an example query in your selected database and show the output (screen capture).
You can select from any of the eight databases listed below but if you want, you can also select one not currently on the list (after consultation with the tutor).
        
         
Submission file: A report (in markdown format) nosql.md that is less than 1200 words.

Task 7: Reflective Report. (12 marks)
A short report in Markdown format (less than 800 words) reflecting on the assignment tasks, the problems encountered, and the solutions found.
You should also briefly outline the Learning Outcomes you have managed to achieve in undertaking this Assignment.
Submission file: A report (in markdown format) named report.md. 
    


What do I need to do to pass?  
The pass mark is 50%. 

How do I achieve high marks in this assessment?  
We are looking for a well-constructed design transformed into a complete and valid implementation. No PYTHON coding is required to achieve a first-class mark (up to 88%) but if you do want to attempt the PYTHON coding tasks, you can gain an extra 12%. The SQL queries should be functional and return the required results. A first-class attempt will also include two well-constructed reports. The NoSQL task should import a small sample of the dataset and implement at least one query showing the output.  This report should outline the design and implementation and include a brief discussion of a normalised (relational) model contrasting it to a de-normalised (NoSQL) model. The final report should reflect on the tasks undertaken, the problems encountered, and the solutions found.  You will make use UWE/Harvard referencing if any external resources are referenced. 

How does the learning and teaching relate to the assessment?  
The lectures and particularly the workshops will guide you on each of design and implementation tasks. All teaching will be completed before the assignment is due for submission. 

What additional resources may help me complete this assessment? 
You will find relevant material in the lectures and worksheets. You can also make use of LinkedIn Learning for hands on lessons and practice. 
 
What do I do if I am concerned about completing this assessment? 
UWE Bristol offer a range of Assessment Support Options that you can explore through this link, and both Academic Support and Wellbeing Support are available. 
For further information, please see the Academic Survival Guide. 

How do I avoid an Assessment Offence on this module? 2 
Use the support above if you feel unable to submit your own work for this module.  
Avoid collusion and explain things in your own words (not those of a machine). 


Marks and Feedback 
Your assessment will be marked according to the following marking criteria. 
You can use these to evaluate your own work before you submit. 
Criterion     <50%     50-59%     60-69%     ≧70% 
Task 1:  Organize and model the data (10%)
    Limited and incorrect model that does not capture all the required entities and attributes. Relationships are incorrect.
No proper naming convention adopted.
    Adequate model with some minor errors. All entities and attributes are captured. Relationships are as required.    A valid and correct model capturing all required entities, attributes and relationships. All attributes are properly named with their required data types.
    Optimal model adopting a consistent naming convention. All entities, attributes (with the required data types) and relationships are captured. Relationships are labelled and correctly enumerated.

Task 2: Forward Engineer the ER model to MySQL (10%)    Database lacks all required fields and may have missing keys. Relationships are not properly implemented using foreign keys as required.    All data has been mapped with the required keys and relationships. There may be minor errors.    A good implementation including the required keys and relationships. Data types may not be optimal and have minor anomalies.    A complete and valid mapping of the ER model with well named fields and data types. Required relationships are complete and correct.
Task 3: Crop and cleanse the data (10% + 6%)    Not all data is cropped and cleaned as required.    Data is adequately cleaned overall but may have some minor anomalies (e.g., missed rows).    All data is cropped and cleaned as required.     A complete cleansing and cropping attempt with all data complete with no missing columns or records. An attempt has been made at the PYTHON code even if not complete.

Task 4: Populate the MySQL database tables (10% + 6%)    Not all data is mapped to the database as required.    All data has been mapped but may be inconsistent in places due to an inadequate model.    All data is mapped to the required tables and all keys are implemented. No missing data and all relationships are realized using foreign keys.    All data is accurately mapped to the required tables and all keys are implemented. No missing data and all relationships are realized using foreign keys. An attempt has been made at the 
PYTHON code even if not complete.
Task 5: SQL queries    Queries are not functional and/or contain errors. Some effort apparent.     All queries are included in the submission as required. Queries are functional. Queries return the expected output.    SQL queries are commented and functionally complete returning the expected output.     SQL queries include comments, are optimized, and work as required. Queries and output (screen captures) are included in the submission. 
Task 6: NoSQL implementation and report    A sub-optimal design or implementation. Report lacks sufficient discussion and reflection.     A reasonable report with an adequate data model. Implementation may have some flaws and the discussion may lack the required detail.    A complete data model and NoSQL implementation. Some discussion of normalisation / de-normalisation in their context.    A complete and accurate NoSQL implementation with an excellent model and discussion. One or more queries have been implemented showing evidenced output.
Task 7: Reflective report    Report lacks sufficient detail and reflection.    An adequate report with some discussion of the problems encountered and solutions implemented.    A good report with adequate discussion of problems and solutions. Some discussion of learning outcomes.    An excellent and complete report with detailed discussion of problems, solutions and the learning outcomes achieved.
 
1.In line with UWE Bristol’s Assessment Content Limit Policy (formerly the Word Count Policy), word count includes all text, including (but not limited to): the main body of text (including headings), all citations (both in and out of brackets), text boxes, tables and graphs, figures and diagrams, quotes, lists.  
2.UWE Bristol’s UWE’s Assessment Offences Policy requires that you submit work that is entirely your own and reflects your own learning, so it is important to: 
Ensure you reference all sources used, using the UWE Harvard system and the guidance available on UWE’s Study Skills referencing pages.  
Avoid copying and pasting any work into this assessment, including your own previous assessments, work from other students or internet sources 
Develop your own style, arguments and wording, so avoid copying sources and changing individual words but keeping, essentially, the same sentences and/or structures from other sources 
Never give your work to others who may copy it 
If an individual assessment, develop your own work and preparation, and do not allow anyone to amend your work (including proof-readers, who may highlight issues but not edit the work).  

When submitting your work, you will be required to confirm that the work is your own, and text-matching software and other methods are routinely used to check submissions against other submissions to the university and internet sources. Details of what constitutes plagiarism and how to avoid it can be found on UWE’s Study Skills pages about avoiding plagiarism. 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:指標代寫 代寫指標 代寫公式 公式代寫
  • 下一篇:指標代寫 代寫選股公式 代寫指標 代寫量化策略
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                在线日韩国产精品| 精品久久久久久久久久久久久久久| 欧美日韩精品欧美日韩精品一综合 | 欧美一区二区三区爱爱| 亚洲电影一区二区三区| 欧美日韩精品三区| 亚洲国产精品影院| 欧美日韩成人综合天天影院| 欧美日韩视频专区在线播放| 欧美mv和日韩mv的网站| 一区二区高清视频在线观看| 国产美女精品一区二区三区| 欧美日本韩国一区二区三区视频| 中文字幕中文字幕在线一区| 国产精品综合二区| 日韩一区国产二区欧美三区| 亚洲一区二区欧美激情| 成人蜜臀av电影| 日韩一区二区视频在线观看| 一区二区在线观看av| 国产三级精品视频| 欧美一区二区三区在线观看| 91精品福利视频| 日韩在线卡一卡二| 国产偷国产偷精品高清尤物| 亚洲精品水蜜桃| 99国产精品久久久久| 日本亚洲视频在线| 欧美国产精品中文字幕| 欧美性色欧美a在线播放| 丝袜美腿亚洲综合| 久久久久久久久久久电影| 欧美日韩精品三区| 国产一区欧美二区| 亚洲韩国一区二区三区| 久久久久综合网| 在线观看三级视频欧美| 国产乱子伦视频一区二区三区 | 欧美日韩国产免费| 激情文学综合网| 亚洲美女视频在线| 欧美mv日韩mv国产| 欧美偷拍一区二区| 国产成人精品免费视频网站| 一区二区高清在线| 日本一区二区三区免费乱视频| 欧美日韩高清影院| www.亚洲色图| 国产资源在线一区| 亚洲国产成人av网| 1024成人网色www| 久久综合九色综合欧美98| 欧美中文字幕一二三区视频| 成人免费毛片aaaaa**| 久99久精品视频免费观看| 一区二区三区波多野结衣在线观看 | 成人97人人超碰人人99| 久久99久久精品欧美| 午夜成人在线视频| 亚洲精品视频一区二区| 中文一区二区完整视频在线观看| 日韩美女视频一区二区在线观看| 色哟哟国产精品免费观看| 成人黄色电影在线 | hitomi一区二区三区精品| 成人福利电影精品一区二区在线观看| 久久国产尿小便嘘嘘| 中文字幕佐山爱一区二区免费| 91片在线免费观看| 亚洲最新视频在线观看| 成人午夜又粗又硬又大| 黑人巨大精品欧美黑白配亚洲| 麻豆精品蜜桃视频网站| 精品伊人久久久久7777人| 日本麻豆一区二区三区视频| 日本欧洲一区二区| 亚洲一区在线免费观看| 亚洲丝袜制服诱惑| 亚洲精品你懂的| 亚洲国产精品影院| 亚洲在线一区二区三区| 一区二区不卡在线视频 午夜欧美不卡在 | av一区二区三区黑人| 日韩激情一二三区| 亚洲与欧洲av电影| 亚洲视频中文字幕| 国产精品色哟哟网站| 亚洲1区2区3区4区| 中文字幕在线不卡| 中文字幕色av一区二区三区| 91麻豆精品国产91久久久更新时间| 日韩免费观看高清完整版在线观看 | 欧美疯狂做受xxxx富婆| 亚洲五月六月丁香激情| 精品乱人伦小说| 欧洲人成人精品| 在线一区二区视频| 91福利区一区二区三区| 日韩一区二区三区视频在线观看| 91论坛在线播放| 欧美一区在线视频| 麻豆精品一区二区| 91蜜桃免费观看视频| 91天堂素人约啪| 国产综合色产在线精品| 蜜臀久久99精品久久久画质超高清 | 一本色道a无线码一区v| 成人免费三级在线| 欧美一级欧美一级在线播放| 亚洲日本va午夜在线影院| 精品久久国产97色综合| 国产午夜精品一区二区三区四区| 亚洲人成网站影音先锋播放| 精品亚洲aⅴ乱码一区二区三区| 一区二区三区精品| 国产一区在线观看视频| 国产精品中文字幕欧美| 日本欧美久久久久免费播放网| 精品一区二区三区影院在线午夜 | 精品久久久久久无| 日本美女一区二区| 综合久久国产九一剧情麻豆| 国产乱码精品一区二区三区忘忧草| 在线精品观看国产| 蜜桃视频在线观看一区| 久久综合九色欧美综合狠狠| 美女看a上一区| 国产乱子伦视频一区二区三区| 亚洲素人一区二区| 麻豆精品新av中文字幕| 91在线观看高清| 久久久久久久久蜜桃| 亚洲精品ww久久久久久p站| 国内精品伊人久久久久影院对白| 欧美在线观看视频一区二区| 欧美韩国日本综合| 韩国一区二区三区| 在线播放欧美女士性生活| 亚洲激情自拍视频| 麻豆免费精品视频| 最新成人av在线| 国产麻豆成人传媒免费观看| 北岛玲一区二区三区四区| 日韩你懂的在线播放| 亚洲人成精品久久久久久| 欧美视频一区二区三区在线观看| 天天综合色天天综合色h| 精品国产一区二区三区久久久蜜月| 国产精品午夜在线| 黄网站免费久久| 国产精品自在欧美一区| 久久综合九色综合97_久久久| 三级欧美韩日大片在线看| 国产成人免费视| 91丝袜呻吟高潮美腿白嫩在线观看| 久久国产精品99久久久久久老狼| 国产一区二区三区在线看麻豆| 欧美成人三级电影在线| 制服丝袜亚洲网站| 成人av一区二区三区| 毛片不卡一区二区| 亚洲主播在线播放| 欧美成人一区二区三区片免费| 国产福利视频一区二区三区| 亚洲日本在线a| 欧美电影精品一区二区| 91视频一区二区| 成人精品免费视频| 狠狠色综合日日| 日韩电影在线看| av在线这里只有精品| 国产91精品精华液一区二区三区| 欧美一区二区三区精品| 亚洲欧洲在线观看av| 麻豆91小视频| 精品粉嫩超白一线天av| 国产综合成人久久大片91| 日韩三级伦理片妻子的秘密按摩| 成人黄色小视频| 亚洲精品国产视频| 在线播放欧美女士性生活| 午夜精品视频一区| 久久免费偷拍视频| 99久久99久久精品国产片果冻| 久久99国产精品免费网站| 国产日韩视频一区二区三区| 国产精品一区二区在线观看不卡| 日韩视频不卡中文| 大胆欧美人体老妇| 美国毛片一区二区| 日韩精品一级中文字幕精品视频免费观看 | 欧美视频一二三区| 久久99精品久久久久婷婷| 日韩精品一级中文字幕精品视频免费观看| 久久久亚洲高清| 日韩欧美国产综合在线一区二区三区 | 欧美精品日韩一区| 国产精品久久一级| 欧美美女视频在线观看| 91久久精品午夜一区二区|