99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做ECN6540、代寫Java,c++編程語言

時間:2024-01-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECN6540  ECN6540 1

Data Provided:

Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
and Yannoulis).


DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

ECN6540 Econometric Methods

Duration: 2? Hours

Maximum 1500 words excluding equations


The answers to the questions must be type-written. The preference is that
symbols and equations should be inserted into the document using the
equation editor in Word. Alternatively, they can be scanned and inserted as an
image (providing it is clear and readable).


There are two questions, firstly on microeconometrics and secondly on
macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
question indicate the weighting given to component sections. Any calculations
must show all workings otherwise full marks will not be awarded.

ECN654540 2
MICROECONOMETRICS

1. The non-mortgage debt behaviour of individuals is modelled using UK
cross sectional data for 2017 from Understanding Society based upon
11,**0 employees. The table below describes the variables in the data.


Variable Definitions
-----------------------------------------------------------------------------------------------------
debtor = 1 if has any non-mortgage debt, 0 otherwise
debt_inc = debt to income ratio (outstanding debt ? annual income)
work_fin = 1 if employed in financial sector, 0 otherwise
lincome = natural logarithm of income last month
ghealth = 1 if currently in good or excellent health, 0 otherwise
sex = 1 if male, 0=female
degree = 1 if university degree, 0 = below degree level education
lsavinv_inc = natural logarithm of saving & investment annual income
age = age of individual in years
agesq = age squared
-----------------------------------------------------------------------------------------------------
a. The following Stata output shows an analysis of modelling the probability that
an individual holds non-mortgage debt using a Logit regression.

logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Logistic regression Number of obs = 11,**0
LR chi2(8) = 546.50
Prob > chi2 = 0.0000
Log likelihood = -7067.5606 Pseudo R2 = 0.0372

----------------------------------------------------------------------------------
debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+--------------------------------------------------------------
1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
lincome | .4584589 .0384631 11.92 0.000 .3830726 .5****51
|
work_fin#c.lincome |
1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.****604
|
ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
lsavinv_inc | -.081**22 .0085226 -9.61 0.000 -.0986062 -.0651983
_cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
----------------------------------------------------------------------------------

ib(0).work_fin##c.lincome is an interaction effect between a binary
and continuous variable. Summary statistics on variables used in the analysis
are provided below.

sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
1.work_fin | 11,767 .0398572 .1956** 0 11
lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

work_fin#|
c.lincome 1 | 11,767 .3197615 1.574852 0 9.72120
ECN6540
ECN6540 3
ghealth | 11,767 .5457636 .4979224 0 1
sex | 11,767 .4812612 .49967 0 1
degree | 11,767 .3192827 .4662186 0 1
age | 11,767 44.43885 10.39257 18 65
lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
-------------+---------------------------------------------------------

i) What do the coefficients of work_fin, lincome and the interaction
term imply? Explain whether the estimates can be interpreted.
ii) Showing your calculations in full, find the marginal effects evaluated
at the mean from the above output.
iii) Provide an economic interpretation of the marginal effects found in
(a(ii)).
iv) Given the pseudo R-squared what is the value of the constrained
log likelihood function? Show your calculation.

[10 marks]

[25 marks]

[10 marks]

[5 marks]
b. There is also information on the amount of debt held as a proportion of
income. This outcome is modelled using the Heckman sample selection
estimator. The Stata output is shown below.

heckman debt_inc age agesq sex degree lsavinv_inc,
select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

Heckman selection model Number of obs = 11,**0
Wald chi2(5) = 249.22
Log likelihood = -13437.59 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------+------------------------------------------------------------
debt_inc |
age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
_cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
-----------------------+------------------------------------------------------------
debtor |
1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
|
work_fin#c.lincome |
1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
|
ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
_cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
-------------------+----------------------------------------------------------------
lambda | -2.579767 .0**69 -2.656537 -2.502997
--------------------------------------------------------------------------------

i) Interpret the estimates in the outcome equation.
ii) In the context of the above Stata output what does the estimate of
the inverse Mills ratio (lambda) suggest? What does lambda
provide an estimate of in terms of the theory?
[5 marks]


[15 marks]
ECN6540
ECN6540 4



c.
iii) What assumption has been made about the covariates
work_fin, lincome and ghealth in the treatment equation?
What are the implications if these assumptions are not met? Are
they individually statistically significant? If these variables are also
included in the outcome equation explain whether the model is
identified or not.

In the context of the above application the following figure shows the
distribution of debt as a proportion of annual income.

Describe a situation in which a Tobit specification would be the preferred
modelling choice rather than a sample selection approach. What
assumptions would the Tobit modelling approach have to make with
regard to the   treatment   and   outcome   equations?


ECN6540
ECN6540 5
MACROECONOMETRICS


2. a.

The following Stata output is based upon modelling aggregate
savings as a function of Gross Domestic Product (GDP), both
measured in constant prices, over time () using data for the U.S.
over the period 1960 to 2020. The savings function is a double
logarithmic specification as follows:
log = 0 + 1log +
Where log is the natural logarithm of savings and log is the
natural logarithm of GDP. The Stata output also shows the results
of ADF tests for savings and GDP. Note that in the output L
denotes a lag and D a difference.


regress logS logY

Source | SS df MS Number of obs = 61
-------------+------------------------------ F( 1, 59) = 180.39
Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
Residual | 9.6029125 59 .**761229 R-squared = 0.7535
-------------+------------------------------ Adj R-squared = 0.7494
Total | 38.963084 60 .649384**4 Root MSE = .40344
------------------------------------------------------------------------------
logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
_cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
------------------------------------------------------------------------------

Durbin-Watson d-statistic( 2, 61) = .7252386
predict e, resid

i) Interpret the OLS results. Explain whether the analysis is likely
to be spurious?
ii) What do the results of the ADF tests on savings and GDP imply
at the 5 percent level? Show the test statistic used, the null
hypothesis tested and the appropriate critical value.
iii) Explain whether savings and GDP are cointegrated at the 5
percent level. Explicitly state the null hypothesis, show
algebraically the estimated test equation based upon the
output, and provide the appropriate critical value.

dfuller logS, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logS |
L1. | -.129875 .0534553 -2.43 0.019 -.2372431 -.0225069
LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
L3D. | -.0834007 .0858594 -0.97 0.336 -.2558545 .08**53
L4D. | -.2258198 .0784568 -2.88 0.006 -.3834049 -.0682348
cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
------------------------------------------------------------------------------

ECN6540
ECN654**
dfuller logY, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY |
L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
_cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
------------------------------------------------------------------------------

dfuller e, lag(4)

Test Statistic
----------------------------
Z(t) -4.042
----------------------------

b. Explain why the Johansen approach to cointegration may be
preferable to the Engle-Granger two step approach, in each of the
following two scenarios:
i) In the above example (part a) when there are variables in the
model, i.e. = 2?
ii) When ?3. In this scenario what is the maximum number of
cointegrating vectors?

c. A researcher has modelled the relationship between personal
consumption expenditure and the money supply as measured by
M2 based upon a double logarithmic specification as follows:
log() = 0 + 1log(2) +
They then build a dynamic forecast of consumption. Two
alternative models are estimated over the period 1969q1 through
to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
ARIMA(1,1,1). Then the researcher forecasts out of sample
through to 2010q3. The results are shown below along with
diagnostic statistics.

i) Based upon the output below for the ARIMA(1,1,1) model draw
both the ACF and PACF for the AR and MA components.
ii) Explain whether the models are stationary and invertible, along
with any potential implications.
iii) Explain in detail which of the above two models is preferred
and why. Outline any further analysis you may want to
undertake giving your reasons.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:天然鉆石和人工培育鉆石的區別:看看十個主要的區別方法
  • 下一篇:代投代發EI 檢索 EI會議
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲蜜臀av乱码久久精品蜜桃| 国产不卡视频在线播放| 91丨porny丨中文| 青娱乐精品在线视频| 亚洲成人第一页| 亚洲欧美国产77777| 国产精品久久国产精麻豆99网站 | 91麻豆精品国产91久久久久久| 不卡电影一区二区三区| www.亚洲色图| 日韩成人精品视频| 免费在线观看日韩欧美| 国产欧美一区在线| 国产拍欧美日韩视频二区| 欧美大片顶级少妇| 成人免费视频视频在线观看免费| 日韩一区中文字幕| 6080国产精品一区二区| 国产高清在线观看免费不卡| 亚洲女同ⅹxx女同tv| 欧美精品一区二区三区蜜桃| 在线精品观看国产| 国产精品1024| 蜜臀av性久久久久蜜臀aⅴ| 国产精品福利一区| 精品蜜桃在线看| 欧美日韩成人激情| 成人国产免费视频| 久久丁香综合五月国产三级网站 | 久久精品国产精品亚洲精品| 亚洲欧美一区二区不卡| 国产亚洲一区二区在线观看| 欧美日韩一级二级| 一本大道久久精品懂色aⅴ| 国产精品1区二区.| 久久超级碰视频| 免费观看一级欧美片| 天天色图综合网| 亚洲成人av免费| 亚洲成人一二三| 亚洲一区二区三区四区在线| 亚洲精品免费在线| 亚洲欧美日韩中文播放 | 欧美一区二区三区免费观看视频| 99久久国产综合精品女不卡| 国产成人av电影在线| 国产伦精一区二区三区| 精品一区二区三区蜜桃| 9191成人精品久久| 91麻豆精品国产综合久久久久久 | 欧美一区二区播放| 欧洲精品在线观看| 色综合久久综合| 色欧美日韩亚洲| 欧亚一区二区三区| 欧美日韩日日摸| 日韩一区二区三| 精品国产人成亚洲区| 久久精品免费在线观看| 国产午夜精品在线观看| 国产精品妹子av| 亚洲精品乱码久久久久| 日韩va亚洲va欧美va久久| 日本不卡高清视频| 国产乱码精品一区二区三区忘忧草 | 国产女人aaa级久久久级| 亚洲第一电影网| 一本色道久久综合狠狠躁的推荐| 久久精品日韩一区二区三区| 老色鬼精品视频在线观看播放| 欧洲一区二区三区免费视频| 亚洲免费观看高清完整版在线观看 | 日韩一区二区视频| 日韩精品欧美精品| 欧美欧美欧美欧美| 天堂午夜影视日韩欧美一区二区| 亚洲va中文字幕| 久久99精品国产91久久来源| 成人一级黄色片| 7799精品视频| 国产一区二区导航在线播放| 欧美一区二区三区四区五区| 石原莉奈一区二区三区在线观看 | 九九视频精品免费| 成人性色生活片| 欧美久久久久免费| 亚洲欧洲在线观看av| 午夜成人在线视频| 成人激情开心网| 91麻豆精品国产91| 综合色中文字幕| 精品一区中文字幕| 欧美亚男人的天堂| 国产精品成人免费| 极品少妇一区二区三区精品视频| 91国内精品野花午夜精品 | 91精品国产综合久久久蜜臀图片 | 自拍av一区二区三区| 亚洲最大色网站| 成人精品一区二区三区中文字幕| 6080午夜不卡| 亚洲h动漫在线| 欧美亚洲动漫制服丝袜| 亚洲免费在线看| 一本久道中文字幕精品亚洲嫩| 久久精品视频一区二区三区| 美女脱光内衣内裤视频久久影院| 欧美午夜片在线看| 一区二区国产盗摄色噜噜| 91在线免费播放| 国产精品国模大尺度视频| 国产一区视频网站| 日韩欧美一二三区| 日韩av一级片| 免费av成人在线| 欧美吻胸吃奶大尺度电影| 国产一区欧美二区| 亚洲午夜精品一区二区三区他趣| 中文字幕av一区二区三区高| 精品一区二区三区在线视频| 精品久久久久久久一区二区蜜臀| 日日噜噜夜夜狠狠视频欧美人| 欧美亚洲精品一区| 国产视频一区二区在线| 午夜不卡av免费| 日韩欧美电影一区| 国产一区二区三区香蕉| 久久精品视频一区二区| 国产91丝袜在线播放九色| 久久亚洲综合av| 成人永久aaa| 夜夜嗨av一区二区三区网页 | 欧美亚洲日本一区| 日韩精品免费视频人成| 日韩免费观看高清完整版在线观看| 日本美女一区二区| 久久久久久久久久久久久夜| 成人一道本在线| 伊人婷婷欧美激情| 91精品国产色综合久久ai换脸| 日本免费在线视频不卡一不卡二| 欧美成人精品二区三区99精品| 国产成人欧美日韩在线电影| 中文字幕成人在线观看| 欧美在线看片a免费观看| 视频在线观看一区| 国产三级一区二区| 日本精品一区二区三区四区的功能| 亚洲成人激情自拍| 国产欧美日韩中文久久| 欧美网站大全在线观看| 国产成人综合自拍| 亚洲一级电影视频| 国产欧美精品一区| 91精品国产色综合久久不卡电影 | 国产日韩av一区二区| 国产福利一区二区三区视频| 精品亚洲porn| 国内外精品视频| 26uuuu精品一区二区| 久久国产福利国产秒拍| 综合久久综合久久| 欧美成va人片在线观看| 91国内精品野花午夜精品| 丰满少妇在线播放bd日韩电影| 午夜精品福利一区二区三区蜜桃| 久久精品视频免费观看| 欧美日韩高清一区二区不卡| 成人av电影在线网| 久久精品国产亚洲一区二区三区| 亚洲欧美成人一区二区三区| 久久久国产一区二区三区四区小说| 欧美日韩在线一区二区| 91在线你懂得| 99re热这里只有精品免费视频| 精品亚洲porn| 久久黄色级2电影| 婷婷久久综合九色综合绿巨人| 中文字幕视频一区| 欧美激情中文不卡| 国产欧美一区二区精品仙草咪| 精品美女在线播放| 欧美不卡视频一区| 日韩视频123| 日韩一区二区三免费高清| 欧美精品精品一区| 欧美视频在线一区二区三区 | 欧美日韩免费在线视频| 94-欧美-setu| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | 久久影院视频免费| 精品日韩一区二区三区免费视频| 在线成人av影院| 欧美日韩国产三级| 欧美精品日韩精品| 欧美日韩国产综合视频在线观看| 欧美亚洲高清一区二区三区不卡| 欧美日韩久久久一区| 3751色影院一区二区三区| 在线播放/欧美激情|