99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品天天看| 国产精品色哟哟| 欧美优质美女网站| 成人免费av网站| 国产大片一区二区| 国产精品99久久久久| 狠狠久久亚洲欧美| 久久99精品国产.久久久久久| 天天操天天综合网| 欧美aaaaaa午夜精品| 美女视频一区在线观看| 蜜桃久久av一区| 久久99精品国产麻豆婷婷| 久久精品国产77777蜜臀| 久久成人免费日本黄色| 狠狠狠色丁香婷婷综合久久五月| 国产一区二区三区免费播放 | 国产精品久久三| 国产精品入口麻豆九色| 国产精品久久久久一区二区三区共| 国产精品理论在线观看| 日韩理论电影院| 亚洲狠狠爱一区二区三区| 婷婷成人激情在线网| 日本欧美在线观看| 国产一区二区在线电影| 国产91精品露脸国语对白| www.欧美亚洲| 欧美色综合网站| 精品免费国产一区二区三区四区| 久久精品视频在线免费观看| 亚洲天堂精品在线观看| 日本免费新一区视频| 国产剧情在线观看一区二区| 色婷婷综合久久久久中文一区二区 | 7777精品伊人久久久大香线蕉超级流畅 | 日韩精品一区二区三区在线观看 | 一本大道综合伊人精品热热| 精品视频免费看| 国产欧美综合在线观看第十页| 亚洲精品国产a| 久久爱www久久做| 在线亚洲一区观看| 久久这里只精品最新地址| 国产精品美女久久久久久久久久久 | 欧美在线视频日韩| 亚洲国产精品成人综合| 亚洲高清中文字幕| 成人国产精品免费观看| 欧美一区永久视频免费观看| 亚洲三级视频在线观看| 激情图片小说一区| 制服丝袜成人动漫| 一区二区三区欧美日韩| 国产麻豆日韩欧美久久| 911精品产国品一二三产区| 国产精品欧美经典| 激情图区综合网| 欧美久久一二区| 一区二区三区在线观看视频| 国产精品77777| 欧美一级欧美一级在线播放| 一区二区三区在线观看动漫| 成人妖精视频yjsp地址| 国产亚洲一区二区在线观看| 青娱乐精品在线视频| 在线观看亚洲专区| 亚洲日韩欧美一区二区在线| 国产91丝袜在线播放0| 日韩精品自拍偷拍| 喷白浆一区二区| 91精品国产综合久久精品图片| 亚洲第一综合色| 欧美色手机在线观看| 亚洲国产裸拍裸体视频在线观看乱了| 不卡在线观看av| 国产精品网站在线播放| 有码一区二区三区| caoporn国产一区二区| 国产精品久久久久一区| 国产成人夜色高潮福利影视| 久久九九99视频| 极品少妇xxxx偷拍精品少妇| 欧美精品久久一区| 免费观看在线色综合| 日韩一二三区不卡| 国产一区二区在线观看免费| 久久夜色精品一区| 成人手机电影网| 国产精品久久久久久户外露出| 国产风韵犹存在线视精品| 国产精品视频你懂的| 99精品视频一区| 伊人婷婷欧美激情| 91成人免费网站| 午夜精品福利久久久| 337p亚洲精品色噜噜| 激情综合一区二区三区| 欧美国产成人在线| 欧美在线观看18| 奇米影视一区二区三区小说| 日韩一区二区三区在线观看 | 一区二区三区欧美久久| 日韩一区二区中文字幕| 国产成人午夜视频| 一级精品视频在线观看宜春院 | 九九视频精品免费| 国产精品欧美久久久久无广告| 在线观看成人小视频| 日本不卡一二三| 欧美经典三级视频一区二区三区| 成人免费视频一区| 免费观看久久久4p| 中文字幕日韩一区| 日韩写真欧美这视频| 99热国产精品| 蜜桃视频一区二区三区在线观看| 国产精品不卡一区| 欧美一区二区在线免费播放| 成人app在线| 久久se精品一区精品二区| 亚洲美女视频在线观看| 日韩精品一区二区三区四区视频 | 欧美国产精品中文字幕| 欧美精品xxxxbbbb| 91亚洲午夜精品久久久久久| 蜜臀av国产精品久久久久| 亚洲欧洲制服丝袜| 国产精品丝袜久久久久久app| 欧美日本国产一区| 一本久久a久久免费精品不卡| 久久99精品国产.久久久久久| 有码一区二区三区| 久久久精品黄色| 欧美变态tickling挠脚心| 欧美在线不卡视频| 91在线精品一区二区| 国产精品18久久久久久久网站| 亚瑟在线精品视频| 亚洲精品国产精品乱码不99| 国产精品九色蝌蚪自拍| 国产视频一区不卡| 26uuuu精品一区二区| 欧美日韩www| 色婷婷av一区二区三区大白胸| 亚洲一区视频在线| 一区视频在线播放| 国产精品三级视频| 91麻豆精品91久久久久同性| 国产成人免费视频网站| 久久99精品久久久| 亚洲影院久久精品| 亚洲成年人影院| 午夜av一区二区| 亚洲成人资源在线| 亚洲一级二级三级| 亚洲成人综合在线| 日韩电影免费在线| 美腿丝袜亚洲综合| 精品无人区卡一卡二卡三乱码免费卡| 奇米一区二区三区| 国产一区美女在线| 成人综合在线视频| 色婷婷香蕉在线一区二区| 色综合久久久网| 欧美日本在线看| 日韩欧美在线影院| 久久久久久亚洲综合影院红桃| 精品sm捆绑视频| 国产精品久久久久久久蜜臀 | 在线播放亚洲一区| 久久一日本道色综合| 国产精品美女久久久久久久久久久 | 99在线视频精品| 欧美色涩在线第一页| 日韩一区二区三区在线观看| 久久影院午夜论| 亚洲精品日韩专区silk| 日本亚洲电影天堂| 成人永久免费视频| 欧美视频在线不卡| 久久久亚洲欧洲日产国码αv| 亚洲欧美中日韩| 蜜桃视频在线观看一区| 成人涩涩免费视频| 欧美一区二区视频观看视频| 欧美国产精品一区二区三区| 性做久久久久久久免费看| 国产精品一级片在线观看| 色综合天天综合狠狠| 日韩一区二区在线看片| 亚洲天堂中文字幕| 久久99精品国产91久久来源| 91免费精品国自产拍在线不卡| 欧美日韩的一区二区| 国产精品精品国产色婷婷| 美女视频黄频大全不卡视频在线播放| 99久久免费国产| 欧美xxxx老人做受| 亚洲高清中文字幕|