99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91精品国产日韩91久久久久久| 国模少妇一区二区三区| 9191国产精品| 91美女在线看| www.亚洲人| av综合在线播放| 粉嫩aⅴ一区二区三区四区| 国产精品中文欧美| 精品一区二区免费| 韩日av一区二区| 97久久超碰国产精品| 精品福利在线导航| 精品播放一区二区| 国产午夜精品理论片a级大结局| 欧美大片在线观看| 久久日韩精品一区二区五区| 26uuu亚洲婷婷狠狠天堂| 日韩精品一区二区在线| 精品国产百合女同互慰| 国产无遮挡一区二区三区毛片日本| 久久久精品2019中文字幕之3| 久久精品一区二区三区不卡 | xnxx国产精品| 中文字幕电影一区| 亚洲日韩欧美一区二区在线| 肉色丝袜一区二区| 精品伊人久久久久7777人| 韩国视频一区二区| 成人免费观看视频| 91丨porny丨首页| 欧美人与z0zoxxxx视频| 日韩女优毛片在线| 91免费版pro下载短视频| 久久影院午夜片一区| 国产精品美日韩| 亚洲综合久久久久| 九九在线精品视频| 一本大道综合伊人精品热热| 色国产精品一区在线观看| 欧美老女人第四色| 欧美激情在线免费观看| 亚洲免费观看高清完整版在线 | 激情综合色丁香一区二区| 日韩在线一二三区| 老司机精品视频导航| 欧美伦理电影网| 久久精品一区二区三区不卡| 精品精品国产高清a毛片牛牛| 男人的天堂久久精品| 久久蜜桃av一区精品变态类天堂| 久久国产综合精品| 三级在线观看一区二区| 免费观看30秒视频久久| 精品一区二区综合| 国产福利一区在线观看| 欧美人狂配大交3d怪物一区| 中文字幕精品三区| 国产成人午夜电影网| 欧美日韩中文精品| 国产精品乱码人人做人人爱| 成人av手机在线观看| 成人动漫av在线| 亚洲美女少妇撒尿| 国产欧美日产一区| 天天综合色天天综合色h| 成人激情黄色小说| 亚洲精品v日韩精品| 欧美精品一二三四| 樱桃视频在线观看一区| 国产精品传媒视频| 91精品国产入口在线| 日韩成人一级大片| 国产成人8x视频一区二区| 91欧美一区二区| 91精品一区二区三区久久久久久| 欧美一区二区三区四区在线观看 | 99免费精品视频| 不卡视频在线观看| 国产色爱av资源综合区| 国产成人免费在线观看| 亚洲国产精品精华液2区45| 欧美美女喷水视频| 99久久夜色精品国产网站| 亚洲一区二区三区中文字幕| 久久久久久久国产精品影院| 欧美不卡一区二区三区四区| 欧美日韩视频一区二区| 7777女厕盗摄久久久| 麻豆视频观看网址久久| 日韩在线一二三区| 一区二区国产视频| 亚洲青青青在线视频| 亚洲午夜三级在线| 国产精品综合一区二区| av不卡在线播放| 色欲综合视频天天天| 制服丝袜中文字幕一区| 国产亚洲一区二区三区四区| 国产精品久久久久久久久免费丝袜| 欧美精品 日韩| 国产精品美女久久久久久久久久久 | 日韩午夜电影av| 日韩欧美综合在线| 亚洲国产精品天堂| 国产精品18久久久久久久久| 欧美午夜精品一区二区三区 | 亚洲视频1区2区| 亚洲精品美国一| 成人午夜私人影院| 欧美一区二区三区在线电影| 亚洲免费观看高清完整版在线观看 | 日韩国产欧美视频| 在线视频亚洲一区| 樱桃国产成人精品视频| 成人天堂资源www在线| 成人手机电影网| 日韩欧美在线123| 精品剧情在线观看| 精品久久人人做人人爱| 777xxx欧美| 精品久久久久久无| 精品国产乱码久久久久久影片| 宅男噜噜噜66一区二区66| 色视频成人在线观看免| 欧美日韩国产免费一区二区| 欧美综合在线视频| 欧美久久久久久久久中文字幕| 欧美日韩亚洲不卡| 精品88久久久久88久久久| 久久奇米777| 亚洲黄色小视频| 伦理电影国产精品| 色哟哟日韩精品| 国产色一区二区| 免费av网站大全久久| 国产成人aaa| 日韩欧美一级片| 亚洲高清视频中文字幕| 国产**成人网毛片九色| 69堂国产成人免费视频| 日韩理论片在线| 国产成人免费av在线| 精品国产免费视频| 国产精品对白交换视频| 国产v日产∨综合v精品视频| 日韩一区二区高清| 亚洲国产va精品久久久不卡综合| 精品一区二区三区不卡| 日韩午夜电影av| 蜜臀久久99精品久久久久宅男| 成人av电影在线| 亚洲人吸女人奶水| 成人激情小说乱人伦| 精品成人佐山爱一区二区| 蜜臀久久99精品久久久久宅男| 在线视频中文字幕一区二区| 一区二区三区中文字幕精品精品 | 久久综合网色—综合色88| 亚洲在线视频一区| 91精品在线观看入口| 久久国产尿小便嘘嘘尿| 久久婷婷一区二区三区| 成人黄色777网| 奇米色777欧美一区二区| 日韩欧美区一区二| 老司机午夜精品| 日韩一区日韩二区| 欧美体内she精视频| 美女脱光内衣内裤视频久久网站| 国产欧美一区二区三区在线老狼| 欧美高清视频不卡网| 日本精品视频一区二区| 久久久久高清精品| 久久久久国产精品麻豆ai换脸| 久久人人爽爽爽人久久久| 欧美精品粉嫩高潮一区二区| 欧美一区午夜视频在线观看| 久久久综合激的五月天| 一二三四区精品视频| 国产一区91精品张津瑜| 欧美最新大片在线看| 美女一区二区在线观看| 日韩在线a电影| 亚洲国产精品久久艾草纯爱| 国产欧美日韩另类视频免费观看 | 国产精品久久久久久妇女6080| 国模冰冰炮一区二区| 免费成人你懂的| 色噜噜狠狠成人网p站| 精品久久久久一区| 日韩激情一二三区| 欧美综合视频在线观看| www一区二区| 久久国产精品99精品国产| 色综合欧美在线视频区| 国产精品午夜春色av| 成年人国产精品| 久久精品视频免费观看| 紧缚捆绑精品一区二区| 日韩欧美在线网站|