99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久精品中文| 国产精品电影网站| 亚洲欧洲日夜超级视频| 狼狼综合久久久久综合网 | 欧美激情视频一区二区三区免费| 欧美色欧美亚洲另类二区 | 欧美日韩一区高清| 一区二区高清在线观看| 国产精品社区| 久久成人在线| 一本色道久久综合| 国产日韩免费| 欧美精品一区在线观看| 中日韩高清电影网| 在线日韩欧美| 国产午夜亚洲精品羞羞网站| 欧美96在线丨欧| 欧美一区二区三区的| 亚洲精品久久久久| 国产老女人精品毛片久久| 免费高清在线一区| 亚洲男人的天堂在线| 99re8这里有精品热视频免费| 国产精品欧美日韩一区| 欧美日韩一级大片网址| 欧美日韩国产美| 欧美电影免费观看高清| 蜜桃av久久久亚洲精品| 欧美在线视频二区| 久久国产精品99精品国产| 一区二区三区国产精品| 亚洲激情不卡| 99国产精品视频免费观看| 激情成人在线视频| 在线日韩中文字幕| 亚洲国产经典视频| 在线免费观看视频一区| 91久久嫩草影院一区二区| 亚洲日本无吗高清不卡| 一区二区免费在线观看| 亚洲精品久久久一区二区三区| 在线亚洲一区观看| 亚洲一区免费在线观看| 欧美一区二区三区在线免费观看| 亚洲欧美一区二区原创| 136国产福利精品导航网址| 欧美寡妇偷汉性猛交| 亚洲精品一级| 亚洲视频一二| 欧美成人中文字幕| 国产九九精品| 亚洲精品欧美一区二区三区| 亚洲午夜一区二区三区| 免费成人激情视频| 国产精品试看| 亚洲色图自拍| 欧美精品久久久久久久免费观看| 国产精品久久久久9999| 亚洲欧洲日本专区| 久久精品免费电影| 欧美日韩亚洲激情| 亚洲精品美女在线观看| 你懂的视频欧美| 国产专区综合网| 欧美专区在线观看一区| 欧美视频一二三区| 99国产精品| 国产精品嫩草久久久久| 一区二区三区四区五区精品视频| 欧美国产日韩精品| 亚洲精品免费在线观看| 欧美激情一区二区三区成人| 在线看日韩欧美| 欧美国产成人在线| 日韩系列在线| 国产精品国产a级| 亚洲欧美卡通另类91av| 国产日产欧美a一级在线| 久久视频国产精品免费视频在线| 精品51国产黑色丝袜高跟鞋| 老色鬼久久亚洲一区二区| 亚洲人成网站影音先锋播放| 欧美激情在线观看| 午夜亚洲影视| 99国产精品自拍| 国产网站欧美日韩免费精品在线观看| 午夜久久美女| 一区二区国产日产| 国产在线精品一区二区中文| 欧美精品激情blacked18| 西瓜成人精品人成网站| 亚洲人成网站777色婷婷| 国产欧美一区二区三区国产幕精品| 久久久伊人欧美| 亚洲一二三区在线观看| 亚洲精品美女免费| 亚洲国产精品热久久| 国产日韩欧美精品在线| 国产精品xxxxx| 国产精品久久久久av免费| 欧美日韩亚洲一区二区| 女女同性精品视频| 欧美fxxxxxx另类| 噜噜噜91成人网| 蜜臀av一级做a爰片久久| 久久久www成人免费毛片麻豆| 欧美一激情一区二区三区| 亚洲自拍偷拍色片视频| 亚洲无限av看| 欧美与黑人午夜性猛交久久久| 欧美一区二区三区视频免费| 欧美一区2区三区4区公司二百| 亚洲欧美视频一区| 久久精品国产清高在天天线| 久久久久久久欧美精品| 美日韩在线观看| 欧美日韩综合视频| 国产亚洲在线| 亚洲韩日在线| 欧美怡红院视频| 欧美大片在线影院| 国外成人在线视频| 在线综合+亚洲+欧美中文字幕| 亚洲素人在线| 欧美精品一区三区| 国精产品99永久一区一区| 亚洲理论在线观看| 久久av资源网站| 国产精品久久久久久久久久久久久久 | 亚洲剧情一区二区| 一本久道久久综合中文字幕| 久久国产天堂福利天堂| 国产精品日韩欧美一区| 最新亚洲激情| 欧美国产日韩xxxxx| 国产综合自拍| 久久综合九色九九| 好看不卡的中文字幕| 久久www免费人成看片高清| 欧美日韩亚洲一区二区三区四区| 亚洲人www| 欧美极品在线视频| 91久久综合| 欧美日韩亚洲在线| 亚洲伊人网站| 国产亚洲毛片| 久久伊人亚洲| 在线综合+亚洲+欧美中文字幕| 欧美日韩喷水| 久久一区二区三区超碰国产精品| 国内精品视频666| 欧美大片在线观看一区二区| 最新国产成人av网站网址麻豆| 欧美国产专区| 久久久久久亚洲精品杨幂换脸 | 99日韩精品| 国内精品久久久久久久果冻传媒| 欧美精品电影| 久久综合色婷婷| 亚洲一区在线视频| 伊人久久婷婷| 狠狠久久亚洲欧美专区| 欧美激情偷拍| 免费在线亚洲| 久久久久久综合| 久久动漫亚洲| 欧美一区二区三区播放老司机| 91久久久亚洲精品| 黄色精品一区| 激情五月婷婷综合| 国产欧美一区二区精品忘忧草 | 午夜影院日韩| 欧美一区二区三区四区高清| 一片黄亚洲嫩模| 在线视频你懂得一区| 亚洲深夜福利在线| 亚洲午夜av| 亚洲欧美日韩国产一区| 亚洲欧美精品在线| 性欧美暴力猛交69hd| 亚洲欧美日韩在线一区| 午夜国产不卡在线观看视频| 亚洲欧美欧美一区二区三区| 性欧美超级视频| 久久这里有精品视频| 欧美精品电影| 久久精品一本| 欧美日韩一区二区三区| 欧美三级在线视频| 国产精品九九久久久久久久| 国产精品久久久久久影院8一贰佰| 国产精品h在线观看| 国产女主播一区二区三区| 亚洲第一主播视频| 一区二区三区视频在线| 久久国产一区| 国产精品视频第一区| 99热免费精品| 男男成人高潮片免费网站| 国产精品乱子久久久久|