99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91在线精品一区二区| 97se狠狠狠综合亚洲狠狠| 国产精品夜夜爽| 久久综合色综合88| 国产精品911| 亚洲欧洲精品一区二区三区不卡| 97国产一区二区| 水蜜桃久久夜色精品一区的特点| 欧美一区二区三区在线观看| 国产一区在线视频| 亚洲久草在线视频| 欧美成人性战久久| av在线不卡观看免费观看| 亚洲午夜视频在线观看| 欧美不卡在线视频| 91片黄在线观看| 视频一区中文字幕国产| 久久亚洲精品小早川怜子| 在线中文字幕一区二区| 极品少妇一区二区三区精品视频| 国产欧美一区二区精品婷婷| 色婷婷综合久久久久中文一区二区| 亚洲电影你懂得| 国产精品拍天天在线| 欧美性做爰猛烈叫床潮| 国产呦萝稀缺另类资源| 一区二区三区中文字幕在线观看| 精品免费日韩av| 在线观看日韩电影| 国产毛片精品一区| 日韩成人一区二区三区在线观看| 国产精品久久免费看| 51午夜精品国产| 91久久香蕉国产日韩欧美9色| 久久91精品久久久久久秒播| 亚洲一区免费在线观看| 久久美女艺术照精彩视频福利播放| 97精品电影院| 三级不卡在线观看| 综合久久久久综合| 欧美大片在线观看| 91精品国产综合久久久久| 91福利视频网站| 99久久er热在这里只有精品66| 国产一区二区中文字幕| 理论电影国产精品| 日韩国产高清影视| 日韩av一二三| 青青草精品视频| 日韩高清在线观看| 日韩电影一区二区三区| 婷婷综合五月天| 日本不卡123| 激情综合亚洲精品| 蜜臀久久久久久久| 久久精品国产一区二区三| 麻豆精品新av中文字幕| 国产综合色视频| 丁香天五香天堂综合| 福利一区福利二区| 国产成人在线视频网址| 国产成人在线视频免费播放| 成人少妇影院yyyy| 91欧美激情一区二区三区成人| 91网站在线播放| 欧美日韩视频在线观看一区二区三区| 欧美色大人视频| 日韩一区二区三区免费观看| 91精品国产一区二区三区蜜臀| 日韩免费观看高清完整版| 国产日韩欧美激情| 一区二区三区在线视频免费| 视频一区二区欧美| 国产尤物一区二区在线| 成人app网站| 欧美日韩国产在线播放网站| 日韩一区二区三区免费观看| 久久午夜电影网| 亚洲免费观看高清完整版在线| 亚洲午夜一区二区| 精品亚洲国内自在自线福利| 不卡一区二区中文字幕| 欧美在线看片a免费观看| 91精品黄色片免费大全| 久久综合九色欧美综合狠狠| 18涩涩午夜精品.www| 日本视频一区二区| 成人激情视频网站| 欧美日韩久久久| 久久毛片高清国产| 日韩理论片一区二区| 国产原创一区二区| 国产亚洲精品aa| 国产九色精品成人porny| 中文字幕一区二区视频| 国产在线国偷精品免费看| 色婷婷综合久久久久中文| 欧美区在线观看| 亚洲理论在线观看| 国产成人一区在线| 欧美成人bangbros| 婷婷夜色潮精品综合在线| 久久国产精品99久久人人澡| 日本亚洲最大的色成网站www| 免费人成网站在线观看欧美高清| 亚洲综合自拍偷拍| 日日摸夜夜添夜夜添国产精品| 国产亚洲短视频| 国产原创一区二区| 欧美写真视频网站| 精品国产免费久久| 椎名由奈av一区二区三区| 九九**精品视频免费播放| 精品日韩在线观看| 国产精品88av| 日韩不卡免费视频| 97精品久久久久中文字幕| 国产毛片一区二区| 亚洲一区二区三区在线看| 在线视频欧美精品| 国产一区二区三区免费看 | 成人亚洲精品久久久久软件| 日韩一级成人av| 欧美一区二区在线播放| 亚洲欧美激情视频在线观看一区二区三区 | 国产·精品毛片| 久久中文娱乐网| 激情久久五月天| 久久女同互慰一区二区三区| 韩国av一区二区三区在线观看| 日韩欧美视频在线| 韩国三级电影一区二区| 久久久久久**毛片大全| 成人永久aaa| 亚洲欧洲日产国码二区| 99免费精品在线观看| 国产精品久线在线观看| 91免费国产视频网站| 亚洲国产视频网站| 7777精品伊人久久久大香线蕉超级流畅| 午夜影院久久久| 欧美日韩国产成人在线91| 国产精品久久久久久久久动漫 | 免费成人av资源网| 欧美成人午夜电影| 国产一区不卡在线| 亚洲欧洲日产国码二区| 在线播放91灌醉迷j高跟美女| 久久精品72免费观看| 国产片一区二区| 91视频国产资源| 亚洲3atv精品一区二区三区| 日韩欧美卡一卡二| 97se亚洲国产综合在线| 日韩福利电影在线| 久久精品视频免费| 色噜噜狠狠色综合中国| 久久精品国产一区二区| 国产精品嫩草99a| 8v天堂国产在线一区二区| 国产成人免费av在线| 午夜精品久久久久久久蜜桃app| 精品盗摄一区二区三区| 91免费看`日韩一区二区| 久久99精品久久只有精品| 综合久久给合久久狠狠狠97色 | 欧美日韩国产精品自在自线| 精品一区二区三区的国产在线播放 | 亚洲一区二区五区| 国产丝袜美腿一区二区三区| 欧美怡红院视频| 粉嫩在线一区二区三区视频| 亚洲午夜一区二区三区| 国产精品麻豆久久久| 欧美一区二区三区影视| 一本高清dvd不卡在线观看| 国内国产精品久久| 人人爽香蕉精品| 亚洲伊人色欲综合网| 国产精品少妇自拍| 久久影院午夜片一区| 日韩三级高清在线| 678五月天丁香亚洲综合网| 一本久久综合亚洲鲁鲁五月天| 国产精品一区二区黑丝| 日韩中文字幕区一区有砖一区| 一区二区三区欧美视频| 亚洲欧洲色图综合| 国产精品乱子久久久久| 精品剧情v国产在线观看在线| 在线播放亚洲一区| 欧美顶级少妇做爰| 欧美三级日韩三级国产三级| 色综合久久中文综合久久97| 丁香婷婷综合网| 国产91精品一区二区麻豆亚洲| 韩国精品一区二区| 国产乱码精品1区2区3区| 国产福利91精品一区二区三区| 国产一区二区三区在线观看精品|