99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                嫩草影院一区二区三区| 亚洲系列第一页| 日日摸天天添天天添破| 人妻偷人精品一区二区三区| 欧美三级视频网站| 日韩欧美一级视频| 亚洲av电影一区| 最新黄色av网址| a级片在线观看| 国产无遮挡猛进猛出免费软件| 精品二区在线观看| 欧美一级淫片免费视频魅影视频| 色丁香婷婷综合久久| 伊人精品视频在线观看| 艳妇乳肉豪妇荡乳av无码福利| 福利网址在线观看| 久久免费手机视频| 天天色影综合网| 亚洲图片第一页| 国产无遮挡又黄又爽| 欧美一级做性受免费大片免费| 婷婷五月综合久久中文字幕| 亚洲图片小说视频| 国产在线视频在线观看| 秋霞精品一区二区三区| 亚洲第一色av| 懂色av蜜桃av| 欧日韩在线视频| 亚洲国产精品自拍视频| 国产三级小视频| 日韩视频中文字幕在线观看| 亚洲熟女一区二区| 国产一级淫片a| 午夜免费一级片| 欧美黄色一区二区三区| www.午夜激情| 免费又黄又爽又猛大片午夜| 天堂在线视频免费| www.亚洲黄色| 日本妇乱大交xxxxx| 亚洲一区二区三区四区av| 国产日韩精品suv| 三上悠亚ssⅰn939无码播放| 一本色道久久综合亚洲精品图片 | 日韩av片免费观看| 亚洲最大成人在线观看| 久久久久亚洲av无码专区体验| 中文字幕色网站| 蜜臀久久久久久999| 91精彩刺激对白露脸偷拍| 欧美a在线播放| www.久久久久久| 熟妇无码乱子成人精品| 国产无遮挡又黄又爽又色| 午夜精品久久久久久久99热黄桃 | 一区二区三区入口| 国产亚洲久一区二区| 一区二区日韩在线观看| 黄色一级视频免费观看| 亚洲精品911| 日本护士做爰视频| 国产裸体永久免费无遮挡| 亚洲第一精品在线观看| 蜜臀aⅴ国产精品久久久国产老师 蜜臀99久久精品久久久久小说 | 九九九在线视频| 91精品人妻一区二区三区蜜桃欧美| 欧美一级特黄aaa| 国产精品区在线观看| 中文字幕第四页| 日韩av.com| 精品国产鲁一鲁一区二区三区| 亚洲中文一区二区三区| 天天干天天色综合| 久久这里只有精品9| 国产成人在线播放视频| 亚洲精品国产精品国| 搡老岳熟女国产熟妇| 久久久福利影院| 国产黄a三级三级三级| 亚洲欧洲久久久| 一区二区在线免费看| 欧美一级视频免费| 激情久久综合网| 国产sm在线观看| 亚洲中文字幕在线观看| 中文字幕第315页| 色啦啦av综合| 久热精品在线观看| 国精产品一区一区三区免费视频 | 国产三级理论片| 懂色av蜜臀av粉嫩av分享吧最新章节| 中国av免费看| 亚洲av成人片色在线观看高潮| 日韩 欧美 综合| 欧美熟妇精品一区二区蜜桃视频 | 日本黄区免费视频观看| 久久久久久蜜桃| 精品爆乳一区二区三区无码av| 国产成人在线网址| а√天堂资源在线| 97精品人人妻人人| 97免费观看视频| 91精品人妻一区二区三区| 一级黄色高清视频| 91精东传媒理伦片在线观看| 亚洲人成人无码网www国产| 永久免费未满蜜桃| 中文字幕精品无码一区二区| 在线免费视频a| 中文字幕一区二区人妻痴汉电车| 午夜免费福利影院| 伊人久久久久久久久久久久久久| 一区二区不卡免费视频| 在线免费观看毛片| 亚洲国产精品成人综合久久久| 亚洲精品午夜视频| 亚洲图片在线播放| 超碰人人人人人人人| 国产精品久久a| 久草视频在线资源| 人妻少妇精品无码专区| 日韩欧美123区| 一区二区在线免费观看视频| 亚洲欧美激情另类| v天堂中文在线| 国产伦精品一区二区三区视频网站 | 天天干天天av| 久久精品99久久久久久| 鲁丝一区二区三区| 日本二区在线观看| 四季av综合网站| 在线观看国产一区二区三区| 亚洲精品乱码久久久久久动漫 | 国产乱色精品成人免费视频 | 久久婷五月综合| 欧美一级特黄高清视频 | 亚洲激情在线看| av电影在线播放| 国产裸体永久免费无遮挡| 久久爱一区二区| 神马午夜精品91| 亚洲色图欧美另类| 国产精品 欧美激情| 好吊视频一二三区| 日韩成人免费观看| 午夜影院在线视频| 99热这里只有精品在线| 国产在线观看无码免费视频| 欧美人一级淫片a免费播放| 天堂网av2014| 99热这里只有精品在线观看| 国产亚洲色婷婷久久99精品91| 欧美日韩一级黄色片| 伊人影院综合在线| 国产黄片一区二区三区| 青青草福利视频| 亚洲国产成人精品女人久久 | 国产suv精品一区二区33| 久久久久久久久毛片| 中国一级特黄毛片| 国产精品福利电影| 爽爽爽在线观看| 成人免费视频国产免费| 强伦人妻一区二区三区| 亚洲天堂视频在线播放| 久久久精品国产sm调教| 亚洲国产av一区二区| 精品久久久中文字幕人妻| 伊人免费视频二| 久久艹精品视频| 亚洲天堂av中文字幕| 蜜桃av噜噜一区二区三区麻豆| 中文字幕一级片| 免费黄色网址在线| 一级黄色大片网站| 欧美精品一二三四区| 成 人片 黄 色 大 片| 日韩免费黄色片| 国产美女福利视频| 在线中文字幕网站| 麻豆国产精品一区| 99久久人妻无码精品系列| 日本一二三区在线| 一本一道精品欧美中文字幕| 中文人妻一区二区三区| 国产第一页第二页| 国产精品suv一区二区| 无码人妻丰满熟妇区五十路| 国产精品福利电影| 中文字幕亚洲精品一区| 欧美图片第一页| 国产精品视频久久久久久久| 在线免费观看一级片| 蜜桃av中文字幕| 懂色av粉嫩av蜜乳av| 中文字幕69页| 日本黄色不卡视频| 精品熟女一区二区三区| www.午夜av| 亚洲天堂网在线视频|