99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产欧美一区二区精品性色超碰 | 99久久婷婷国产精品综合| 秋霞电影一区二区| 一级做a爱片久久| 国产精品国模大尺度视频| 26uuu精品一区二区| 日韩视频在线一区二区| 在线播放日韩导航| 91精品国产综合久久婷婷香蕉| 欧美综合一区二区| 欧美一a一片一级一片| 日本久久电影网| 色天天综合色天天久久| 日本精品一级二级| 欧美日韩一区二区三区在线看| 在线观看欧美日本| 欧美自拍偷拍一区| 欧美精品三级在线观看| 91精品国产高清一区二区三区蜜臀 | 亚洲欧美日韩久久精品| 亚洲精品美腿丝袜| 午夜精品久久久久久| 日韩黄色在线观看| 国产真实乱子伦精品视频| 成人午夜av电影| 91网站黄www| 欧美一区二区在线观看| 精品免费一区二区三区| 国产欧美精品一区aⅴ影院| 国产精品久99| 亚洲国产成人精品视频| 欧美a一区二区| 成人高清视频免费观看| 欧美自拍偷拍一区| 久久久亚洲国产美女国产盗摄| 亚洲国产成人一区二区三区| 亚洲综合色自拍一区| 激情五月播播久久久精品| av中文字幕在线不卡| 69av一区二区三区| 国产精品盗摄一区二区三区| 香蕉成人伊视频在线观看| 国产福利电影一区二区三区| 欧美日韩在线不卡| 国产午夜精品久久| 五月综合激情日本mⅴ| 国产成人免费高清| 欧美日韩你懂得| 国产精品视频一二| 日本欧美肥老太交大片| 91污片在线观看| 日韩欧美123| 午夜精品福利一区二区蜜股av | 国产精品拍天天在线| 丝袜国产日韩另类美女| 91亚洲午夜精品久久久久久| 久久人人爽人人爽| 日韩精品每日更新| 一本到三区不卡视频| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 欧美天堂亚洲电影院在线播放| 亚洲精品一区二区三区蜜桃下载| 亚洲免费观看高清完整版在线| 精品一区二区三区日韩| 欧美丝袜第三区| 亚洲三级小视频| 国产激情精品久久久第一区二区 | 成人动漫在线一区| 久久亚洲综合av| 蜜乳av一区二区| 欧美日韩三级在线| 亚洲国产综合在线| 欧美在线视频不卡| 日韩美女视频19| 91一区一区三区| 最近中文字幕一区二区三区| 成人美女视频在线观看| 国产三级精品三级| 国产精品性做久久久久久| 精品国产乱码久久久久久牛牛| 日韩国产在线观看一区| 欧美精品少妇一区二区三区| 亚洲va欧美va国产va天堂影院| 91久久香蕉国产日韩欧美9色| 亚洲欧洲99久久| 色综合天天性综合| 一区二区理论电影在线观看| 91蝌蚪porny九色| 一区av在线播放| 欧美老年两性高潮| 美国三级日本三级久久99| 日韩一区二区视频| 国模无码大尺度一区二区三区| 久久婷婷久久一区二区三区| 国产传媒日韩欧美成人| 中文字幕一区二区三区在线播放 | 欧美激情一区二区| 一本色道久久综合亚洲91| 玉米视频成人免费看| 91精品国产aⅴ一区二区| 久久国产日韩欧美精品| 国产精品久久久久久一区二区三区 | 国产99久久精品| 中文字幕在线播放不卡一区| 色狠狠桃花综合| 日本少妇一区二区| 国产午夜精品理论片a级大结局| 色综合一区二区| 日韩av一级片| 国产精品成人午夜| 7878成人国产在线观看| 国产一区不卡精品| 亚洲精品老司机| 日韩精品一区二区三区在线观看| a亚洲天堂av| 婷婷成人激情在线网| 久久久久久久国产精品影院| 97精品超碰一区二区三区| 男男视频亚洲欧美| 亚洲视频在线一区| 精品国产一区二区三区久久久蜜月| 成人国产在线观看| 精品在线观看视频| 亚洲国产一区二区a毛片| 久久九九久精品国产免费直播| 91美女在线观看| 国产精品一区二区无线| 婷婷激情综合网| 亚洲免费在线电影| 国产色婷婷亚洲99精品小说| 欧美一区二区高清| 欧美中文字幕一区| 91蝌蚪国产九色| 成人高清免费观看| 国产麻豆欧美日韩一区| 日韩综合一区二区| 亚洲午夜在线视频| 国产精品二三区| 久久午夜电影网| 久久日一线二线三线suv| 9191成人精品久久| 欧美老女人在线| 欧美日韩综合色| 欧美亚洲一区三区| 欧美伊人久久久久久久久影院| voyeur盗摄精品| 成人av综合一区| www.亚洲精品| 92精品国产成人观看免费| 国产精品一区二区不卡| 国产精品资源网| 国产在线观看免费一区| 久久国产人妖系列| 麻豆国产精品官网| 紧缚奴在线一区二区三区| 蜜桃av噜噜一区| 国产精品一区二区黑丝| 国产a精品视频| 91在线国产观看| 欧洲国内综合视频| 欧美网站大全在线观看| 欧美午夜不卡视频| 4hu四虎永久在线影院成人| 5月丁香婷婷综合| www久久精品| 国产精品嫩草影院com| 一区二区中文字幕在线| 亚洲精品中文字幕乱码三区| 一区二区三区四区亚洲| 亚洲成人手机在线| 免费成人美女在线观看.| 久久福利资源站| 高清久久久久久| 欧美伊人久久久久久午夜久久久久| 欧美日韩午夜影院| 精品三级av在线| 国产欧美视频一区二区三区| 一区二区在线看| 久久精品国产**网站演员| 国产99久久久国产精品潘金网站| 菠萝蜜视频在线观看一区| 欧美性做爰猛烈叫床潮| 2014亚洲片线观看视频免费| 国产精品美女久久久久av爽李琼 | 久久久久久久综合日本| 亚洲综合一二区| 久草中文综合在线| 成年人网站91| 7777女厕盗摄久久久| 亚洲国产精品成人综合| 亚洲专区一二三| 激情成人综合网| 欧美无人高清视频在线观看| 26uuu亚洲婷婷狠狠天堂| 亚洲欧美偷拍三级| 精品一区二区三区视频在线观看| 91在线国产观看| 精品欧美一区二区在线观看| 亚洲精品高清在线| 国产传媒久久文化传媒|