99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫MLDS 421: Data Mining

時(shí)間:2024-02-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲精品乱码久久久久久久久| 在线精品观看国产| 国产永久精品大片wwwapp| 国产精品一区在线| 7777精品伊人久久久大香线蕉 | 亚洲国产精品久久不卡毛片 | 香蕉成人啪国产精品视频综合网| 精品影视av免费| 精品国产亚洲在线| 久草精品在线观看| 国产精品你懂的在线欣赏| 国产高清一区日本| 国产精品盗摄一区二区三区| 欧美视频在线观看一区二区| 亚洲欧洲日韩av| 午夜精品久久久久久久久久| 欧美一区二区久久| 婷婷国产在线综合| 在线不卡中文字幕播放| 色乱码一区二区三区88| 七七婷婷婷婷精品国产| 亚洲精品精品亚洲| 精品久久久久久最新网址| 日韩女优av电影| 欧美在线不卡视频| 欧美精品tushy高清| 精品毛片乱码1区2区3区| 国产成人在线色| 色哟哟一区二区在线观看| 2021中文字幕一区亚洲| 视频一区二区不卡| 91在线云播放| 国产精品理伦片| 国产一区二区美女| 久久综合色一综合色88| 一区二区在线观看免费视频播放| 久久精品av麻豆的观看方式| 欧美三级韩国三级日本一级| 国产精品日日摸夜夜摸av| 亚洲婷婷综合久久一本伊一区| 欧美96一区二区免费视频| 一本一本大道香蕉久在线精品| 国产精品午夜电影| 91福利资源站| 麻豆精品国产传媒mv男同| 欧美蜜桃一区二区三区| 五月天激情综合网| 日韩一区二区三区电影在线观看| 日本在线不卡一区| 欧美一区二区三区在| 天天做天天摸天天爽国产一区| 欧美精品色综合| 国产乱妇无码大片在线观看| 久久久电影一区二区三区| 激情深爱一区二区| 亚洲国产激情av| 欧美综合久久久| 九九久久精品视频| 国产午夜精品美女毛片视频| 99视频精品免费视频| 日韩av一级片| 亚洲乱码中文字幕综合| 亚洲女厕所小便bbb| 日韩亚洲欧美成人一区| 国产91精品一区二区| 一区二区视频免费在线观看| 久久青草欧美一区二区三区| 在线日韩av片| 色欧美日韩亚洲| av中文一区二区三区| 国产精品一区二区三区四区| 久久99国产乱子伦精品免费| 天天色 色综合| 天天综合天天综合色| 奇米色一区二区| 国产一区亚洲一区| 亚洲人成亚洲人成在线观看图片| 欧美日韩一区二区三区在线看 | 精品国产一区二区三区不卡 | 精品一区二区免费视频| 玉足女爽爽91| 亚洲日本免费电影| ...xxx性欧美| 亚洲国产精品v| 国产精品美女www爽爽爽| 久久婷婷久久一区二区三区| 欧美日韩一区在线观看| 国产iv一区二区三区| 国产不卡视频在线观看| 国产伦精品一区二区三区免费| 成人成人成人在线视频| 国产精品一卡二卡| 欧美性猛交xxxx乱大交退制版 | eeuss影院一区二区三区 | 欧美主播一区二区三区美女| 在线一区二区三区| 3d成人动漫网站| 国产精品―色哟哟| 日韩经典一区二区| aaa欧美色吧激情视频| 在线播放中文一区| 国产精品理论在线观看| 成人久久18免费网站麻豆 | 国产精品第13页| 首页亚洲欧美制服丝腿| 国产精品白丝av| 欧美日韩午夜在线| 亚洲男人天堂av网| 国产一区二区三区在线看麻豆| 91麻豆自制传媒国产之光| 91精品婷婷国产综合久久性色| 国产精品不卡在线| 欧美国产激情二区三区| 午夜电影久久久| 欧美喷水一区二区| 亚洲二区视频在线| 97超碰欧美中文字幕| 1024成人网| 本田岬高潮一区二区三区| 精品福利在线导航| 捆绑变态av一区二区三区| 欧美日韩成人一区二区| 亚洲第一成人在线| 在线不卡一区二区| 国产真实乱对白精彩久久| 日韩一级大片在线观看| 蜜桃视频在线一区| 久久影院视频免费| 日韩精品亚洲一区二区三区免费| 色伊人久久综合中文字幕| 亚洲精品成a人| 欧美日韩精品一区二区天天拍小说 | 亚洲综合成人在线| 国产精品色眯眯| 99久久99精品久久久久久| 亚洲麻豆国产自偷在线| 一本高清dvd不卡在线观看| 亚洲精品国产品国语在线app| 欧美日韩亚洲综合一区| 国内精品嫩模私拍在线| 亚洲精品成人在线| 欧美精品一区二区三区很污很色的 | 国产精品一区二区久久精品爱涩| 久久精品人人做| 欧美日韩精品一区二区三区| 国产伦精品一区二区三区免费迷 | 91福利视频久久久久| 国产精品久久99| 亚洲国产精品ⅴa在线观看| 欧美专区日韩专区| www.视频一区| 国产91综合一区在线观看| 奇米精品一区二区三区四区| 亚洲午夜久久久久| 一区二区三区不卡视频在线观看| 日韩一区二区电影网| 日韩一区二区不卡| 精品美女一区二区| 欧美日韩亚洲综合在线 | 伊人开心综合网| 亚洲欧洲99久久| 亚洲欧美日韩电影| 亚洲天堂成人在线观看| 亚洲欧洲综合另类| 一区二区三区日韩欧美精品| 亚洲人xxxx| 亚洲日本一区二区三区| 亚洲欧美成aⅴ人在线观看| 中文字幕在线不卡一区| 亚洲国产精品一区二区久久 | 欧美综合一区二区三区| 成人永久免费视频| 色综合激情五月| 日本韩国一区二区三区| 91精品国产欧美一区二区| 欧美另类高清zo欧美| 日韩三级伦理片妻子的秘密按摩| 久久女同精品一区二区| 亚洲成人一区在线| 国产精品影视在线| 日韩免费高清av| 国产精品国产精品国产专区不蜜| 亚洲高清免费一级二级三级| 蜜桃91丨九色丨蝌蚪91桃色| 国产电影一区在线| 欧美丰满嫩嫩电影| 亚洲精品国产精品乱码不99| 免费亚洲电影在线| 欧美亚洲免费在线一区| 日本一区二区电影| 精品在线观看免费| 日韩女优av电影在线观看| 日韩精品一二区| 欧美日韩高清一区二区三区| 亚洲人成网站精品片在线观看 | 99国产精品久| 国产精品高潮呻吟久久| 成人午夜电影久久影院| 久久亚洲综合色一区二区三区 | 日韩美女视频19|