合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做Biological Neural Computation、Python/Java程序語言代寫

        時間:2024-02-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Biological Neural Computation
        Homework problem set 2
        Spring 2024
        Data Assigned: 2/19/2024
        Data Due: 3/08/2024
        General Guidelines: The homework solutions should include figures that clearly
        capture the result. The figures have to be labeled, well explained and the results
        must be clearly discussed. When appropriate, it is recommended that you use
        the Hypothesis – Rationale – Experiments/data – Analysis – Results –
        Discussion/Conclusions – Limitation(s) framework to discuss your work.
        The first sheet of the homework must certify that this is completely your
        work and list the students/people you have consulted or received help from
        (with your signature and date of submission). All online references used
        must be listed in the reference section at the end of the homework.
        Good luck,
        Barani Raman
        2
        Points for BME 572 /BME **2 students
        Points    for    L41    5657 students
        Problem 1. Implement the batch perceptron algorithm to obtain a linear discriminating
        function as described in Chapter 5 of Duda et al Pattern Classification book. Create
        linearly separable and non-linearly separable datasets with samples belonging to the two
        classes. Apply your perceptron algorithm to discriminate. Report your observation and
        analysis? Plot classification error vs. # of iterations, classification results, and the
        obtained decision boundary.
        [30 pts]
        [50 pts]
        Problem 2: Using the same datasets used in problem 1, now create a linear classifier
        using Least Mean Squares (LMS) rule. Compare these results with the Perceptron
        algorithm results.
        [20 pts]
        [50 pts]
        3
        For BME 572 students only
        [50 pts]
        Problem 3: Using back-propagation algorithm train a multilayer perceptron for the
        problem of recognizing handwritten digits. A popular dataset (‘mnist_all.dat’) comprising
        of training and testing samples of the different digits is provided in the homework folder.
        Each sample is 28x28 gray scale 8-bit image.
        Figure 1: Sample of the nine handwritten digits in the MNIST dataset.
        Training:
        The Matrix train0 has the training samples for digit ‘0’. Each row has 784 columns
        corresponding to the 28x28 pixel (you can use reshape command to plot the digits; e.g.
        imagesc(reshape(test0(1,:),28,28)') plots first training sample for digit 0’’.) Similarly,
        there is one dataset corresponding to each digit. You will train your network using the
        training samples only. You are free to choose a network of any size, and any non-linear
        activation function. Also, you are free to use any preprocessing technique or
        dimensionality reduction technique, or use only a subset of training samples, if you
        would like to reduce the complexity of the neural network or the training process.
        Initialize the weight vectors to a very small random number between 0 and 0.1. This will
        help the network to converge better than equal weights or zero weights.
        4
        For non-linear activation two popular choices are the following:
        Choice1: Logistic function
        Choice2: Hyperbolic tangent function
        [Note: a, b are constants]
        Testing:
        The Matrix test0 has the test samples for digit ‘0’. Similarly, there is one corresponding
        to each digit. You will evaluate the performance of your network using the test samples
        only.
        Show the evolution of the prediction error as a function of training iteration, final
        classification percentages for each digit, and the overall classification performance.
        Discuss your findings.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:代寫MATH60026、Python程序設計代做
      2. 下一篇:代寫ELEC-4840 編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 国产福利一区二区在线视频| 波多野结衣一区二区三区高清av| 日本免费电影一区| 国产一区二区三区四| 久草新视频一区二区三区| 亚洲熟妇av一区| 亚洲AV综合色区无码一区爱AV| 色婷婷av一区二区三区仙踪林| 亚洲AV无码一区东京热久久| 相泽亚洲一区中文字幕| 杨幂AV污网站在线一区二区| 人妻无码一区二区不卡无码av| 女人和拘做受全程看视频日本综合a一区二区视频| 无码日韩精品一区二区免费暖暖 | 亚洲国产成人一区二区三区| 一区二区高清在线| 日亚毛片免费乱码不卡一区| 国产精品无码一区二区三区毛片| 亚洲宅男精品一区在线观看| 精品无码一区二区三区爱欲九九| 国产一区二区三区免费| 亚洲乱码日产一区三区| 日本道免费精品一区二区| 上原亚衣一区二区在线观看| 不卡一区二区在线| 国产一区二区三区免费| 麻豆aⅴ精品无码一区二区| 久久se精品动漫一区二区三区| 福利一区二区三区视频在线观看| 久99精品视频在线观看婷亚洲片国产一区一级在线 | 日韩精品无码久久一区二区三| 国产主播福利一区二区| 国产未成女一区二区三区 | 亚洲一区二区三区影院| 亚洲一区二区三区影院 | 国产伦精品一区二区免费| 亚洲一区二区女搞男| 精品无码国产一区二区三区AV | 亚洲片一区二区三区| 激情一区二区三区| 美女视频一区三区网站在线观看|