合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做Biological Neural Computation、Python/Java程序語(yǔ)言代寫

        時(shí)間:2024-02-24  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Biological Neural Computation
        Homework problem set 2
        Spring 2024
        Data Assigned: 2/19/2024
        Data Due: 3/08/2024
        General Guidelines: The homework solutions should include figures that clearly
        capture the result. The figures have to be labeled, well explained and the results
        must be clearly discussed. When appropriate, it is recommended that you use
        the Hypothesis – Rationale – Experiments/data – Analysis – Results –
        Discussion/Conclusions – Limitation(s) framework to discuss your work.
        The first sheet of the homework must certify that this is completely your
        work and list the students/people you have consulted or received help from
        (with your signature and date of submission). All online references used
        must be listed in the reference section at the end of the homework.
        Good luck,
        Barani Raman
        2
        Points for BME 572 /BME **2 students
        Points    for    L41    5657 students
        Problem 1. Implement the batch perceptron algorithm to obtain a linear discriminating
        function as described in Chapter 5 of Duda et al Pattern Classification book. Create
        linearly separable and non-linearly separable datasets with samples belonging to the two
        classes. Apply your perceptron algorithm to discriminate. Report your observation and
        analysis? Plot classification error vs. # of iterations, classification results, and the
        obtained decision boundary.
        [30 pts]
        [50 pts]
        Problem 2: Using the same datasets used in problem 1, now create a linear classifier
        using Least Mean Squares (LMS) rule. Compare these results with the Perceptron
        algorithm results.
        [20 pts]
        [50 pts]
        3
        For BME 572 students only
        [50 pts]
        Problem 3: Using back-propagation algorithm train a multilayer perceptron for the
        problem of recognizing handwritten digits. A popular dataset (‘mnist_all.dat’) comprising
        of training and testing samples of the different digits is provided in the homework folder.
        Each sample is 28x28 gray scale 8-bit image.
        Figure 1: Sample of the nine handwritten digits in the MNIST dataset.
        Training:
        The Matrix train0 has the training samples for digit ‘0’. Each row has 784 columns
        corresponding to the 28x28 pixel (you can use reshape command to plot the digits; e.g.
        imagesc(reshape(test0(1,:),28,28)') plots first training sample for digit 0’’.) Similarly,
        there is one dataset corresponding to each digit. You will train your network using the
        training samples only. You are free to choose a network of any size, and any non-linear
        activation function. Also, you are free to use any preprocessing technique or
        dimensionality reduction technique, or use only a subset of training samples, if you
        would like to reduce the complexity of the neural network or the training process.
        Initialize the weight vectors to a very small random number between 0 and 0.1. This will
        help the network to converge better than equal weights or zero weights.
        4
        For non-linear activation two popular choices are the following:
        Choice1: Logistic function
        Choice2: Hyperbolic tangent function
        [Note: a, b are constants]
        Testing:
        The Matrix test0 has the test samples for digit ‘0’. Similarly, there is one corresponding
        to each digit. You will evaluate the performance of your network using the test samples
        only.
        Show the evolution of the prediction error as a function of training iteration, final
        classification percentages for each digit, and the overall classification performance.
        Discuss your findings.

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:代寫MATH60026、Python程序設(shè)計(jì)代做
      2. 下一篇:代寫ELEC-4840 編程
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 国产精品亚洲不卡一区二区三区| 四虎在线观看一区二区| 亚洲国产一区二区三区青草影视| 国产福利精品一区二区| 无码少妇一区二区浪潮免费| 精品一区二区三区中文字幕 | 中文无码精品一区二区三区| 亚洲一区二区三区四区在线观看| 日韩一区二区三区在线观看| 少妇一夜三次一区二区| 3d动漫精品成人一区二区三| 日本一区二区三区在线观看| 精品伦精品一区二区三区视频| 无码av中文一区二区三区桃花岛 | 亚洲一区二区成人| 一区二区三区91| 精品91一区二区三区| 日韩一区二区免费视频| 成人在线观看一区| 韩国福利视频一区二区| 亚洲欧美日韩中文字幕在线一区 | 精品国产毛片一区二区无码| 午夜视频一区二区| 精品国产精品久久一区免费式 | 亚洲高清一区二区三区电影| 久久久久人妻精品一区| 亚洲av无码一区二区三区不卡 | 成人一区二区三区视频在线观看| 久久亚洲AV午夜福利精品一区| 中文字幕乱码一区二区免费| 亚洲韩国精品无码一区二区三区 | 人妻夜夜爽天天爽一区| 好爽毛片一区二区三区四无码三飞 | 中文字幕在线不卡一区二区| 国产吧一区在线视频| 国产吧一区在线视频| 成人H动漫精品一区二区| 精品国产亚洲一区二区三区在线观看 | 福利一区二区在线| 无码日韩精品一区二区人妻| 久久久不卡国产精品一区二区|