99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久精品99国产精品| va亚洲va日韩不卡在线观看| 成人精品免费看| 欧美激情综合在线| 色综合久久88色综合天天免费| 亚洲丝袜制服诱惑| 日本久久精品电影| 水蜜桃久久夜色精品一区的特点| 日韩精品中文字幕在线不卡尤物| 国产成人av电影在线| 亚洲欧美成人一区二区三区| 欧美日韩在线直播| 国产福利精品导航| 亚洲国产综合人成综合网站| 精品国产亚洲在线| 欧美调教femdomvk| 国产精品亚洲午夜一区二区三区| 亚洲欧美色综合| 精品国产一区二区三区久久影院| 成人av免费观看| 久久99最新地址| 一区二区三区成人| 久久久久久久久99精品| 欧美日韩一区视频| av福利精品导航| 久久99国产精品久久| 一区二区三区精品视频在线| 久久在线免费观看| 日韩一级高清毛片| 精品视频在线免费看| caoporn国产一区二区| 免费成人美女在线观看| 亚洲精品久久7777| 国产精品剧情在线亚洲| 日韩精品中文字幕在线一区| 欧美视频在线一区二区三区 | 欧美一区永久视频免费观看| 成人av电影免费观看| 国产一区不卡精品| 久久99九九99精品| 视频一区欧美精品| 午夜欧美在线一二页| 亚洲你懂的在线视频| 国产精品麻豆一区二区| 国产日韩亚洲欧美综合| 精品美女一区二区| 精品国产一区二区三区av性色| 欧美一区二区视频在线观看2022| 欧美色图12p| 欧美日韩一级二级三级| 欧美三级中文字幕| 欧美日韩国产不卡| 欧美精品成人一区二区三区四区| 日本黄色一区二区| 欧美色中文字幕| 欧美三电影在线| 欧美精品粉嫩高潮一区二区| 欧美影院精品一区| 91欧美一区二区| 欧美性videosxxxxx| 欧美剧情电影在线观看完整版免费励志电影| 波波电影院一区二区三区| 成人午夜av电影| 99久久er热在这里只有精品15| 91亚洲国产成人精品一区二三| 91亚洲精品一区二区乱码| 在线国产电影不卡| 欧美精品黑人性xxxx| 久久综合色播五月| 亚洲欧美国产三级| 免费国产亚洲视频| 成人av网站免费观看| 欧美亚一区二区| 欧美成人三级在线| 日韩一区在线免费观看| 午夜欧美在线一二页| 国产一区二区h| 色激情天天射综合网| 欧美日韩精品免费| 久久久99免费| 一区二区成人在线观看| 另类综合日韩欧美亚洲| 99精品国产热久久91蜜凸| 在线播放中文一区| 国产精品久久三| 五月婷婷色综合| 国产一区日韩二区欧美三区| 不卡一区二区三区四区| 欧美一级搡bbbb搡bbbb| 国产精品伦一区| 久久精工是国产品牌吗| 99国产精品国产精品毛片| 7777精品伊人久久久大香线蕉的| 国产清纯美女被跳蛋高潮一区二区久久w | 在线观看欧美日本| 久久欧美一区二区| 日韩高清欧美激情| 色菇凉天天综合网| 久久看人人爽人人| 日韩精品久久理论片| 色哟哟在线观看一区二区三区| 精品国内片67194| 午夜av一区二区三区| 91一区二区在线观看| 久久九九国产精品| 久久99久久99精品免视看婷婷 | 欧美伊人久久久久久午夜久久久久| 日韩亚洲欧美综合| 亚洲成人动漫av| 色老汉一区二区三区| 国产精品免费视频网站| 国产精品伊人色| 精品欧美一区二区在线观看| 亚洲一区免费观看| 91国内精品野花午夜精品| 亚洲国产激情av| 国产风韵犹存在线视精品| 日韩精品中文字幕在线一区| 视频一区视频二区中文| 欧美日韩国产欧美日美国产精品| 亚洲少妇最新在线视频| 99久久99久久精品免费观看| 国产人伦精品一区二区| 成人午夜免费电影| 国产精品美女久久久久av爽李琼 | 一二三四社区欧美黄| 91在线视频官网| 亚洲人成电影网站色mp4| 97国产一区二区| 亚洲男女一区二区三区| 在线欧美日韩精品| 天堂影院一区二区| 日韩欧美中文字幕精品| 久久99久久久久久久久久久| 2023国产精品视频| 成人国产亚洲欧美成人综合网 | 99精品久久只有精品| 亚洲欧洲99久久| 日本精品一区二区三区四区的功能| 中文字幕一区二区三区在线不卡| 成人午夜又粗又硬又大| 亚洲欧美成aⅴ人在线观看 | 欧美韩国日本一区| 色诱亚洲精品久久久久久| 亚洲第一二三四区| 精品国产区一区| 99re亚洲国产精品| 日韩av中文字幕一区二区三区| 久久综合久久鬼色| 色综合 综合色| 肉色丝袜一区二区| 国产日韩高清在线| 欧美在线小视频| 寂寞少妇一区二区三区| 国产精品不卡一区| 欧美一区二区女人| 成人福利视频网站| 亚洲成av人片一区二区三区| 久久综合九色综合欧美亚洲| 92精品国产成人观看免费| 全国精品久久少妇| 亚洲欧美日韩国产手机在线| 日韩女优视频免费观看| 97久久人人超碰| 久久精品国产99久久6| 一区二区在线观看免费| 日韩精品中文字幕一区| 一本大道av伊人久久综合| 久久精品国产久精国产爱| 亚洲美腿欧美偷拍| 久久久久久久久岛国免费| 欧美三级在线视频| 91麻豆高清视频| 国产成人精品一区二区三区四区| 亚洲在线视频免费观看| 亚洲国产成人自拍| 欧美一级片在线观看| 91久久国产最好的精华液| 国产成人免费在线视频| 麻豆成人av在线| 天堂久久一区二区三区| 一区二区三区成人| 亚洲图片另类小说| 国产午夜久久久久| 日韩精品一区二| 91精品欧美综合在线观看最新 | 午夜久久久久久久久| 中文字幕一区二区三区色视频| 日韩精品专区在线影院重磅| 欧美日本乱大交xxxxx| 在线免费视频一区二区| 色天使色偷偷av一区二区| 国产91丝袜在线播放九色| 国内久久精品视频| 美腿丝袜亚洲综合| 日本成人在线看| 日本伊人精品一区二区三区观看方式| 一区二区三区在线观看国产| 国产免费成人在线视频| 国产精品国产三级国产aⅴ无密码|