99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CEG5301代做、MATLAB編程語言代寫

時間:2024-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CEG5301 Machine Learning with Applications:
Part I: Homework #3
Important note: the due date is 17/03/2024. Please submit the softcopy of your report
to the submission folder in CANVAS. Late submission is not allowed unless it is well
justified. Please supply the MATLAB code or Python Code in your answer if computer
experiment is involved.
Please note that the MATLAB toolboxes for RBFN and SOM are not well developed.
Please write your own codes to implement RBFN and SOM instead of using the
MATLAB toolbox.
Q1. Function Approximation with RBFN (10 Marks)
Consider using RBFN to approximate the following function:
𝑦𝑦 = 1.2 sin(𝜋𝜋𝜋𝜋) − cos(2.4𝜋𝜋𝜋𝜋) , 𝑓𝑓𝑓𝑓𝑓𝑓 w**9;w**9; ∈ [−1.6, 1.6]
The training set is constructed by dividing the range [−1.6, 1.6] using a uniform step
length 0.08, while the test set is constructed by dividing the range [−1.6, 1.6] using
a uniform step length 0.01. Assume that the observed outputs in the training set are
corrupted by random noise as follows.
𝑦𝑦(𝑖𝑖) = 1.2 sin 𝜋𝜋𝜋𝜋(𝑖𝑖)  − cos 2.4𝜋𝜋𝜋𝜋(𝑖𝑖)  + 0.3𝑛𝑛(𝑖𝑖)
where the random noise 𝑛𝑛(𝑖𝑖) is Gaussian noise with zero mean and stand deviation of
one, which can be generated by MATLAB command randn. Note that the test set is not
corrupted by noises. Perform the following computer experiments:
a) Use the exact interpolation method (as described on pages 17-26 in the slides of
lecture five) and determine the weights of the RBFN. Assume the RBF is Gaussian
function with standard deviation of 0.1. Evaluate the approximation performance of
the resulting RBFN using the test set.
 (3 Marks)
b) Follow the strategy of “Fixed Centers Selected at Random” (as described on page 38
in the slides of lecture five), randomly select 20 centers among the sampling points.
Determine the weights of the RBFN. Evaluate the approximation performance of the
resulting RBFN using test set. Compare it to the result of part a).
(4 Marks)
c) Use the same centers and widths as those determined in part a) and apply the
regularization method as described on pages 43-46 in the slides for lecture five. Vary
the value of the regularization factor and study its effect on the performance of RBFN.
(3 Marks)
2
Q2. Handwritten Digits Classification using RBFN (20 Marks)
In this task, you will build a handwritten digits classifier using RBFN. The training data
is provided in MNIST_M.mat. Each binary image is of size 28*28. There are 10
classes in MNIST_M.mat; please select two classes according to the last two different
digits of your matric number (e.g. A0642311, choose classes 3 and 1; A1234567,
choose classes 6 and 7). The images in the selected two classes should be assigned the
label “1” for this question’s binary classification task, while images in all the remaining
eight classes should be assigned the label “0”. Make sure you have selected the correct
2 classes for both training and testing. There will be some mark deduction for wrong
classesselected. Please state your handwritten digit classes for both training and testing.
In MATLAB, the following code can be used to load the training and testing data:
-------------------------------------------------------------------------------------------------------
load mnist_m.mat;
% train_data  training data, 784x1000 matrix
% train_classlabel  the labels of the training data, 1x1000 vector
% test_data  test data, 784x250 matrix
% train_classlabel  the labels of the test data, 1x250 vector
-------------------------------------------------------------------------------------------------------
After loading the data, you may view them using the code below:
-------------------------------------------------------------------------------------------------------
tmp=reshape(train_data(:,column_no),28,28);
imshow(tmp);
-------------------------------------------------------------------------------------------------------
To select a few classes for training, you may refer to the following code:
-------------------------------------------------------------------------------------------------------
trainIdx = find(train_classlabel==0 | train_classlabel==1 | train_classlabel==2); % find the
location of classes 0, 1, 2
Train_ClassLabel = train_classlabel(trainIdx);
Train_Data = train_data(:,trainIdx);
-------------------------------------------------------------------------------------------------------
Please use the following code to evaluate:
-------------------------------------------------------------------------------------------------------
TrAcc = zeros(1,1000);
TeAcc = zeros(1,1000);
thr = zeros(1,1000);
TrN = length(TrLabel);
TeN = length(TeLabel);
for i = 1:1000
 t = (max(TrPred)-min(TrPred)) * (i-1)/1000 + min(TrPred);
 thr(i) = t;

TrAcc(i) = (sum(TrLabel(TrPred<t)==0) + sum(TrLabel(TrPred>=t)==1)) / TrN;
TeAcc(i) = (sum(TeLabel(TePred<t)==0) + sum(TeLabel(TePred>=t)==1)) / TeN;
end
3
plot(thr,TrAcc,'.- ',thr,TeAcc,'^-');legend('tr','te');
-------------------------------------------------------------------------------------------------------
TrPred and TePred are determined by TrPred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TrData(: , j)) Ү**;Ү**;
𝑖𝑖=0 and
TePred(j) = ∑ w**8;w**8;𝑖𝑖𝜑𝜑𝑖𝑖(TeData(: , j)) Ү**;Ү**;
𝑖𝑖=0 where Ү**;Ү**; is the number of hidden neurons.
TrData and TeData are the training and testing data selected based on your matric
number. TrLabel and TeLabel are the ground-truth label information (Convert to {0,1}
before use!).
You are required to complete the following tasks:
a) Use Exact Interpolation Method and apply regularization. Assume the RBF is
Gaussian function with standard deviation of 100. Firstly, determine the weights of
RBFN without regularization and evaluate its performance; then vary the value of
regularization factor and study its effect on the resulting RBFNs’ performance.
(6 Marks)

b) Follow the strategy of “Fixed Centers Selected at Random” (as described in page 38
of lecture five). Randomly select 100 centers among the training samples. Firstly,
determine the weights of RBFN with widths fixed at an appropriate size and compare
its performance to the result of a); then vary the value of width from 0.1 to 10000 and
study its effect on the resulting RBFNs’ performance.
(8 Marks)

c) Try classical “K-Mean Clustering” (as described in pages 39-40 of lecture five) with
2 centers. Firstly, determine the weights of RBFN and evaluate its performance; then
visualize the obtained centers and compare them to the mean of training images of each
class. State your findings.
(6 Marks)
4
Q3. Self-Organizing Map (SOM) (20 Marks)
a) Write your own code to implement a SOM that maps a **dimensional output layer
of 40 neurons to a “hat” (sinc function). Display the trained weights of each output
neuron as points in a 2D plane, and plot lines to connect every topological adjacent
neurons (e.g. the 2nd neuron is connected to the 1st and 3rd neuron by lines). The training
points sampled from the “hat” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
x = linspace(-pi,pi,400);
trainX = [x; sinc(x)];  2x400 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(3 Marks)
b) Write your own code to implement a SOM that maps a 2-dimensional output layer
of 64 (i.e. 8×8) neurons to a “circle”. Display the trained weights of each output neuron
as a point in the 2D plane, and plot lines to connect every topological adjacent neurons
(e.g. neuron (2,2) is connected to neuron (1,2) (2,3) (3,2) (2,1) by lines). The training
points sampled from the “circle” can be obtained by the following code:
-------------------------------------------------------------------------------------------------------
X = randn(800,2);
s2 = sum(X.^2,2);
trainX = (X.*repmat(1*(gammainc(s2/2,1).^(1/2))./sqrt(s2),1,2))';  2x800 matrix
plot(trainX(1,:),trainX(2,:),'+r'); axis equal
-------------------------------------------------------------------------------------------------------
(4 Marks)
c) Write your own code to implement a SOM that clusters and classifies handwritten
digits. The training data is provided in Digits.mat. The dataset consists of images in 5
classes, namely 0 to 4. Each image with the size of 28*28 is reshaped into a vector and
stored in the Digits.mat file. After loading the mat file, you may find the 4 matrix/arrays,
which respectively are train_data, train_classlabel, test_data and test_classlabel. There
are totally 1000 images in the training set and 100 images in the test set. Please omit 2
classes according to the last digit of your matric number with the following rule:
omitted class1 = mod(the last digit, 5), omitted_class2 = mod(the last digit+1, 5). For
example, if your matric number is A06423**, ignore classes mod(7,5)=2 and
mod(8,5)=3; A1234569, ignore classes 4 and 0.
Thus, you need to train a model for a 3-classes classification task. Make sure you have
selected the correct 3 classes for both training and testing. There will be some mark
deduction for wrong classes selected. Please state your handwritten digit classes for
both training and testing.
After loading the data, complete the following tasks:
c-1) Print out corresponding conceptual/semantic map of the trained SOM (as
described in page 24 of lecture six) and visualize the trained weights of each output
neuron on a 10×10 map (a simple way could be to reshape the weights of a neuron
5
into a 28×28 matrix, i.e. dimension of the inputs, and display it as an image). Make
comments on them, if any.
(8 Marks)
c-2) Apply the trained SOM to classify the test images (in test_data). The
classification can be done in the following fashion: input a test image to SOM, and
find out the winner neuron; then label the test image with the winner neuron’s label
(note: labels of all the output neurons have already been determined in c-1).
Calculate the classification accuracy on the whole test set and discuss your
findings.
(5 Marks)
The recommended values of design parameters are:
1. The size of the SOM is 1×40 for a), 8×8 for b), 10×10 for c).
2. The total iteration number N is set to be 500 for a) & b), 1000 for c). Only the
first (self-organizing) phase of learning is used in this experiment.
3. The learning rate 𝜂𝜂(𝑛𝑛) is set as:
𝜂𝜂(𝑛𝑛) = 𝜂𝜂0 exp  − 𝑛𝑛
𝜏𝜏2
  , 𝑛𝑛 = 0,1,2, …
where 𝜂𝜂0 is the initial learning rate and is set to be 0.1, 𝜏𝜏2 is the time constant
and is set to be N.
4. The time-varying neighborhood function is:
ℎ𝑗𝑗,𝑖𝑖(w**9;w**9;)(𝑛𝑛) = exp  − 𝑑𝑑𝑗𝑗,𝑖𝑖
2
2ҵ**;ҵ**;(𝑛𝑛)2  , 𝑛𝑛 = 0,1,2, …
where 𝑑𝑑𝑗𝑗,𝑖𝑖 is the distance between neuron j and winner i, ҵ**;ҵ**;(𝑛𝑛) is the effective
width and satisfies:
ҵ**;ҵ**;(𝑛𝑛) = ҵ**;ҵ**;0 exp  − 𝑛𝑛
𝜏𝜏1
  , 𝑛𝑛 = 0,1,2, …
where ҵ**;ҵ**;0 is the initial effective width and is set according to the size of output
layer’s lattice, 𝜏𝜏1 is the time constant and is chosen as 𝜏𝜏𝑖𝑖 = Ү**;Ү**;
log(ҵ**;ҵ**;0)
.
Again, please feel free to experiment with other design parameters which may be
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP26020、代做c/c++,Java編程設計
  • 下一篇:代寫ACS130、代做C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲成人av电影| 日本欧美在线看| 久久99国内精品| 在线观看91av| 蜜臀av一区二区在线免费观看 | 亚洲欧美日韩国产另类专区| 91免费国产在线| 亚洲一区二区四区蜜桃| 欧美日韩成人激情| 激情图片小说一区| 亚洲国产成人午夜在线一区| 成人深夜福利app| 亚洲一区在线免费观看| 欧美一级专区免费大片| 国产在线精品视频| 亚洲欧美在线aaa| 欧美日韩成人高清| 国产91综合一区在线观看| 亚洲欧美日韩综合aⅴ视频| 欧美精品久久天天躁| 国产在线视频一区二区三区| 亚洲免费观看高清在线观看| 日韩一级免费观看| 97国产精品videossex| 亚洲一二三区视频在线观看| 在线视频亚洲一区| 久久精品国产亚洲高清剧情介绍 | 国产精品电影一区二区三区| 欧美色图天堂网| 国产精品99久| 91精品欧美福利在线观看| 国产盗摄女厕一区二区三区| 亚洲va欧美va人人爽午夜| 欧美激情中文不卡| 日韩欧美一级精品久久| 在线精品观看国产| 国产精品影视天天线| 日韩成人免费电影| 亚洲综合色自拍一区| 国产免费成人在线视频| 欧美男男青年gay1069videost | 亚洲乱码国产乱码精品精可以看| 91精品国产欧美一区二区成人 | 视频一区二区不卡| 中文字幕一区二区视频| 欧美xxxxxxxx| 3atv一区二区三区| 欧美人与性动xxxx| 欧美视频在线一区二区三区| 色哟哟一区二区在线观看| 不卡的电影网站| 国产精品一级二级三级| 美国毛片一区二区三区| 三级久久三级久久久| 亚洲444eee在线观看| 亚洲一区二区三区中文字幕| 亚洲日穴在线视频| 中文字幕日韩一区二区| 国产精品女主播在线观看| 不卡在线视频中文字幕| 国产成人8x视频一区二区| 久久99国内精品| 国产一区二区三区美女| 国产成人免费高清| 国产ts人妖一区二区| 成人午夜电影网站| 97se狠狠狠综合亚洲狠狠| 91极品视觉盛宴| 欧美日韩高清不卡| 欧美一级免费观看| 26uuu国产在线精品一区二区| 精品久久久久久久久久久久包黑料| 日韩精品一区二区三区在线| 久久久99免费| 亚洲素人一区二区| 日韩国产精品久久| 国产精品一区一区| 成人黄色大片在线观看| 欧美在线免费播放| 日韩欧美黄色影院| 国产精品伦一区二区三级视频| 亚洲少妇最新在线视频| 偷拍自拍另类欧美| 亚洲va国产天堂va久久en| 美洲天堂一区二卡三卡四卡视频| 国产一区二区三区美女| 成人av在线看| 91精品国产aⅴ一区二区| 久久免费电影网| 一区二区三区欧美日韩| 美女视频黄免费的久久| 成人免费视频国产在线观看| 欧美日韩你懂得| 国产亚洲综合在线| 亚瑟在线精品视频| 国产91精品久久久久久久网曝门| 色噜噜狠狠色综合欧洲selulu | 在线看国产一区| 精品国产精品网麻豆系列| 亚洲免费观看高清完整版在线观看熊| 日本不卡视频在线观看| 色综合咪咪久久| 久久精品男人天堂av| 日韩精品欧美精品| 色综合天天性综合| 国产日产欧美一区| 男女男精品网站| 色悠悠久久综合| 欧美激情综合五月色丁香| 国产精品国产三级国产专播品爱网| 性欧美大战久久久久久久久| 成人黄动漫网站免费app| 日韩欧美二区三区| 亚洲一二三四区| 日韩成人精品在线| 欧美网站大全在线观看| 中文字幕一区二区不卡| 国产精品2024| 26uuu国产电影一区二区| 午夜精品久久久久久久久久| 91麻豆免费看| 亚洲欧美日韩小说| 99久久国产综合色|国产精品| 国产亚洲短视频| 国产一区二区日韩精品| 久久先锋资源网| 老司机精品视频一区二区三区| 4438x亚洲最大成人网| 午夜影院在线观看欧美| 欧美天堂一区二区三区| 亚洲制服欧美中文字幕中文字幕| 色狠狠综合天天综合综合| 亚洲精品日韩一| 欧美日韩精品一区二区三区| 日韩成人午夜电影| 亚洲精品一区二区在线观看| 国产毛片精品视频| 国产精品美女久久久久久| 91网站视频在线观看| 亚洲国产日韩a在线播放性色| 欧美一区二区三区免费观看视频| 日韩精品1区2区3区| 日韩三级免费观看| 国产精品一区二区在线看| 国产精品丝袜在线| 一本久久a久久免费精品不卡| 偷拍与自拍一区| 久久精品在线观看| 97久久超碰国产精品| 午夜国产精品一区| 亚洲精品一区在线观看| 成人激情黄色小说| 亚洲综合区在线| ww久久中文字幕| 在线免费观看成人短视频| 亚洲视频每日更新| 制服丝袜亚洲色图| 麻豆久久久久久久| 国产欧美一区二区三区网站| 97成人超碰视| 无吗不卡中文字幕| 欧美一区二区三区精品| 成人精品小蝌蚪| 成人免费视频在线观看| 色哟哟一区二区三区| 国产乱对白刺激视频不卡| 国产丝袜在线精品| youjizz国产精品| 亚洲欧美日韩国产另类专区| 欧美不卡一区二区三区| 国产91精品一区二区| 国产精品国产精品国产专区不蜜| 免费高清在线视频一区·| 久久久久亚洲蜜桃| 色综合视频在线观看| 日韩成人av影视| 亚洲精品乱码久久久久久| 久久精品人人做| 日韩一区二区三区在线视频| 91极品美女在线| 91亚洲精华国产精华精华液| 亚洲电影一级片| 国产偷国产偷精品高清尤物| 欧美亚洲一区二区在线观看| 99久久国产综合精品女不卡| 亚洲成人综合视频| 亚洲精品在线观看网站| 捆绑紧缚一区二区三区视频| 亚洲精选视频免费看| 日韩精品一区二区三区swag | 亚洲欧美日韩在线| 国产丝袜在线精品| 欧美日韩黄视频| 不卡影院免费观看| 亚洲美女淫视频| 国产精品乱码人人做人人爱| 欧美日韩你懂的| 91啪亚洲精品| 爽好多水快深点欧美视频| 精品久久久久久久久久久久包黑料 |