合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        COCMP5329 代寫(xiě)、代做 python 程序設(shè)計(jì)

        時(shí)間:2024-03-17  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        OCMP5**9 - Deep Learning
        Coding Assignment
         
        This is an individual assignment and should be completed independently.
         
        Due: End of day on Friday of Week 4
        1. Task description
        Based on the codes given in Tutorial: Multilayer Neural Network, you are required to accomplish a multi-class classification task on the provided dataset.
         
        In this assignment, you are expected to implement the modules specified in the marking table. 
         
        You must guarantee that the submitted codes are self-complete, and the newly implemented modules can be successfully run in common Python environment.
         
        You are allowed to use Deep Learning frameworks (e.g. PyTorch). You are encouraged not to use these deep learning frameworks if you want to challenge yourself for a deeper understanding. In this case, scientific computing packages, such as NumPy and SciPy, can be used to manually implement the auto-grad functions. 
         
        If you have any questions about the assignment, please contact the teaching team.
         
        The dataset can be downloaded from Canvas. There are 10 classes in this dataset. The dataset has been split into training set and test set.
         
        2. Instructions to hand in the assignment 
        2.1 Go to Canvas and upload the report. The report should include each member’s details (student ID and name). 
        2.2 The report must include a link of your code and data (e.g. a shared Google Cloud folder, so we can easily run it on Colab). Clearly provide instructions on how to run your code in the appendix of the report or include a readme.txt in your shared folder. 
        Don’t update the code/data any more after the submission. If the latest modified time of the shared folder is significantly late after the submission deadline, the whole submission will be taken as a late submission.
        2.3 The report must clearly show (i) details of your modules, (ii) the predicted results from your classifier on test examples, (iii) run-time, and (iv) hardware and software specifications of the computer that you used for performance evaluations. 
        2.4 There is no special format to follow for the report but please make it as clear as possible and similar to a research paper. 
        2.5 The use of ChatGPT or other AI tools is prohibited in the assignments. A plagiarism checker will be used.
         
        Late submission
        Suppose you hand in work after the deadline.
        If you have not been granted special consideration or arrangements:
        – A penalty of 5% of the maximum marks will be taken per day (or part) late. After 10 days, you will be awarded a mark of zero.
        – For example, if an assignment is worth 40% of the final mark and you are one hour late submitting, then the maximum marks possible would be 38%.
        – For example, if an assignment is worth 40% of the final mark and you are 28 hours late submitting, then the maximum marks possible marks would be 36%.
        – Warning: submission sites get very slow near deadlines.
        – Submit early; you can resubmit if there is time before the deadline. 
         
         
        3. Marking scheme
        Category    Criterion
        Report [50]    Introduction [5]
        - What’s the aim of the study?
        - Why is the study important?
             Methods [15]
         
        - Problem formulation and pre-processing (if any) [3]
        - The principle of different modules [4]
        - What is the design of your best model [4]
        - Implementation details and hyper-parameters [4]
             Experiments and results (with Figures or Tables) [20] 
         
        - Performance in terms of different evaluation metrics [5]
        - Extensive analysis, including hyperparameter analysis, ablation studies and comparison methods [5]
        - Meaningful discussion of the results [5]
        - Justification on your best model [5]
             Discussion and conclusion [5]
        - Meaningful conclusion and reflection
             Other [5]
        - At the discretion of the marker: for impressing the marker, excelling expectation, etc. Examples include fast code, using LATEX, etc.
        Modules [45]    More than one hidden layer [5]
             ReLU activation [5]
             Weight decay [5]
             Momentum SGD [5]
             Dropout [5]
             Softmax and cross-entropy loss [5]
             Mini-batch training [5]
             Batch normalisation [5]
             Other advanced operations (e.g., GELU, Adam) [5] 
        * Please make a highlight if you have one you think is advanced.  
        Code [5]    Code runs within a feasible time [5]
        Code Penalties [-]
             Well organised, commented and documented [5]
             Badly written code: [-20]
             Not including instructions on how to run your code: [-30]
             Late submission
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:菲律賓移民局的PWP多少錢(qián)(PWP申請(qǐng)流程)
      2. 下一篇:免簽入境泰國(guó)步驟(去泰國(guó)提早預(yù)定機(jī)票嗎)
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線(xiàn))
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)24小時(shí)服務(wù)熱線(xiàn)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)2
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)客服熱線(xiàn)
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
      4. 上海廠(chǎng)房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 无码视频一区二区三区| 亚洲一区二区三区国产精华液 | 欧美日韩精品一区二区在线视频 | 日本在线视频一区二区| 国产日韩视频一区| 无码日本电影一区二区网站| 亚洲国产精品第一区二区| 亚洲国产成人久久综合一区77 | 88国产精品视频一区二区三区| 国产成人免费一区二区三区| 无码av中文一区二区三区桃花岛| 精品乱码一区二区三区四区| 日本免费一区二区久久人人澡| 亚洲一区二区三区在线视频| 亚洲AV成人精品日韩一区18p| 精品国产一区二区三区免费看| 中文字幕乱码人妻一区二区三区| 色窝窝无码一区二区三区| 国产精品伦一区二区三级视频| 精品人妻少妇一区二区三区在线| 小泽玛丽无码视频一区| 一区二区三区波多野结衣| 国产一区二区三区在线观看免费| 精品免费国产一区二区| 四虎成人精品一区二区免费网站 | 91在线看片一区国产| 99久久人妻精品免费一区| 搡老熟女老女人一区二区| 久久er99热精品一区二区| 国产精品亚洲午夜一区二区三区 | 国产午夜一区二区在线观看| 国产在线精品观看一区| 日韩三级一区二区三区| 丰满岳妇乱一区二区三区| 天堂Aⅴ无码一区二区三区| 日本不卡在线一区二区三区视频| 亚洲一区二区三区免费在线观看| 毛片一区二区三区| 日韩一区二区三区精品| 伊人久久大香线蕉av一区| 99精品一区二区免费视频|