99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久99热这里只有精品| 国产精品久久久久久久久免费桃花 | 免费美女久久99| 亚洲一区二区美女| 亚洲人xxxx| 日韩理论片一区二区| 欧美国产日韩在线观看| 国产精品免费av| 欧美国产一区二区| 国产女主播一区| 国产亚洲婷婷免费| 国产清纯在线一区二区www| 久久人人爽人人爽| 久久蜜桃av一区精品变态类天堂| 精品国产区一区| 精品国产a毛片| 久久综合久久久久88| 久久嫩草精品久久久久| 久久午夜老司机| 中文字幕电影一区| 成人欧美一区二区三区白人| 亚洲伦理在线精品| 亚洲va欧美va人人爽午夜| 日韩电影一区二区三区| 美国毛片一区二区| 国产成人精品1024| 91浏览器在线视频| 欧美日韩国产大片| 欧美一级午夜免费电影| 久久久久久久久一| 中文字幕一区二区三区在线观看| 亚洲精品国产无天堂网2021| 五月天国产精品| 国内成人自拍视频| 99国产一区二区三精品乱码| 欧美日韩在线亚洲一区蜜芽| 精品日韩欧美在线| 国产精品对白交换视频| 午夜国产不卡在线观看视频| 经典三级在线一区| 99视频一区二区三区| 欧美喷水一区二区| 日本一区二区三区电影| 亚洲一区二区在线播放相泽| 狠狠色丁香久久婷婷综合丁香| 成人免费福利片| 欧美情侣在线播放| 国产精品乱码久久久久久| 亚洲 欧美综合在线网络| 大胆欧美人体老妇| 91精品国产入口在线| 国产精品久久777777| 青椒成人免费视频| 一本到一区二区三区| 久久久久久一级片| 日本在线不卡一区| www.欧美色图| 欧美xfplay| 爽爽淫人综合网网站 | 在线免费观看不卡av| 日韩美女一区二区三区| 一区二区在线观看免费| 国产剧情av麻豆香蕉精品| 在线观看不卡视频| 中文字幕巨乱亚洲| 国产乱码精品一区二区三区忘忧草 | 激情综合五月天| 精品视频一区二区不卡| 亚洲卡通动漫在线| 国产剧情av麻豆香蕉精品| 91精品免费观看| 亚洲综合无码一区二区| 99久久综合精品| 中文字幕免费不卡| 国产成人一级电影| 精品国产一区二区三区忘忧草| 奇米精品一区二区三区在线观看一| 91福利在线导航| 一区二区三区在线观看网站| 成人激情开心网| 国产亲近乱来精品视频| 狠狠久久亚洲欧美| 精品国产露脸精彩对白| 精品一区二区三区影院在线午夜| 91精品国产欧美一区二区| 亚洲成人免费视| 欧美巨大另类极品videosbest | 国产自产高清不卡| 日韩视频免费观看高清在线视频| 亚洲国产cao| 91精品免费观看| 蜜臀久久99精品久久久久久9| 欧美一区二区三区免费观看视频| 亚洲国产aⅴ成人精品无吗| 欧美日韩一卡二卡三卡| 亚洲欧美一区二区三区孕妇| 99精品久久久久久| 亚洲免费观看视频| 欧美日韩综合在线免费观看| 日本午夜一本久久久综合| 日韩一区二区三区观看| 国内精品嫩模私拍在线| 国产精品三级电影| 色婷婷激情久久| 午夜成人免费电影| 精品国内二区三区| 成人av免费在线| 午夜久久久久久久久久一区二区| 欧美一区二区日韩| 国产综合久久久久久鬼色| 国产精品三级电影| 欧美日韩一区二区欧美激情| 九色综合狠狠综合久久| 中文字幕在线不卡一区二区三区| 在线观看视频一区二区| 捆绑调教美女网站视频一区| 国产精品伦理一区二区| 91麻豆精品国产91久久久| 精东粉嫩av免费一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 在线区一区二视频| 极品少妇一区二区三区精品视频 | www.久久久久久久久| 亚洲h动漫在线| 久久网这里都是精品| 日本精品视频一区二区| 久久福利视频一区二区| 亚洲欧美另类图片小说| 日韩欧美一区二区久久婷婷| 91丨九色丨蝌蚪富婆spa| 麻豆91免费看| 一区二区三区不卡视频| 久久九九久精品国产免费直播| 欧美色电影在线| 亚洲高清免费观看高清完整版在线观看| 日韩一卡二卡三卡国产欧美| 99re这里只有精品6| 日韩成人午夜精品| 亚洲黄色片在线观看| 久久美女高清视频| 欧美一级午夜免费电影| 欧美系列在线观看| 懂色av一区二区在线播放| 日韩不卡一二三区| 亚洲一区精品在线| 亚洲欧美一区二区三区国产精品| 国产亚洲欧美一区在线观看| 5566中文字幕一区二区电影| 91麻豆福利精品推荐| 成人国产精品免费| 国产精品 欧美精品| 精品中文字幕一区二区 | 成人蜜臀av电影| 国产一本一道久久香蕉| 久久99精品一区二区三区三区| 亚洲成人高清在线| 亚洲综合免费观看高清完整版在线 | 欧美精彩视频一区二区三区| 久久综合中文字幕| 日韩欧美国产1| 精品国产免费视频| 91麻豆产精品久久久久久| 风间由美性色一区二区三区| 欧美xxxxx裸体时装秀| 欧美亚洲一区三区| 91九色最新地址| 日本高清无吗v一区| 成人的网站免费观看| 成人免费黄色在线| 99精品国产视频| 在线免费观看一区| 欧美色视频在线| 在线观看www91| 欧美性受xxxx黑人xyx| 欧美性生交片4| 欧美日韩精品欧美日韩精品一| 欧美日韩一区二区电影| 在线综合视频播放| 日韩欧美国产三级| 久久亚洲捆绑美女| 国产精品无遮挡| 亚洲男同1069视频| 亚洲国产毛片aaaaa无费看| 午夜天堂影视香蕉久久| 日韩成人免费看| 久久成人av少妇免费| 黄页视频在线91| av不卡免费在线观看| 色综合视频在线观看| 欧美日韩大陆一区二区| 日韩精品一区二区三区在线播放| 精品国产免费一区二区三区香蕉 | 日本乱人伦aⅴ精品| 欧日韩精品视频| 日韩午夜在线影院| 国产精品美女久久久久久久久久久 | 亚洲视频图片小说| 天天综合色天天综合| 美洲天堂一区二卡三卡四卡视频| 国产成人亚洲综合a∨婷婷|