99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CMSE11475、代做Java/Python編程

時間:2024-04-02  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Financial Machine Learning (CMSE11**5)
Group Project Assignment
2023/2024
Content
Content................................................................................................................................................................................................. 1
Project Description......................................................................................................................................................................... 2
Individual Project: ......................................................................................................................................................................... 2
Project Deadline and Submission:........................................................................................................................................... 2
Project topic ................................................................................................................................................................................... 2
Project Hints ................................................................................................................................................................................... 2
Suggested Topics ............................................................................................................................................................................ 3
Forecasting Limit Order Book ............................................................................................................................................... 3
Forecasting Stock Volatility.................................................................................................................................................... 5
Forecasting High Frequency Cryptocurrency Return.................................................................................................. 7
Project Description
The project aims to practice the use of state-of-art machine learning models to analyse financial data and
solve financial problems.
Individual Project:
The project is individual project. No group is required. Students shall select their own topic with data to
complete their own research question alone. Cooperation and discussion with each other in the learning
process is encouraged but the project shall be completed by students’ own work, not a grouped work.
Project Deadline and Submission:
Individual projects run from 15
th January 2024 (week 1) to 29th March 2024 (week 10).
The deadline of submission is 14:00, Thursday, 4
th April 2024.
The submision of the project includes the project report and all implementation codes (do NOT submit any
data). The code shall work on the originally provided datasets. The report and the codes shall be ZIPPED to
one package for submission.
The report MUST follow the given template. All sections are required. The code MUST have complete and
detailed comments for every major logical section.
Project topic
Each student should individually choose a topic from the following suggested topics (with provided data) as
your own project. You are encouraged to revise/improve the project topic to make it more practical,
challenging, and suitable for your own research question. It’s fine if many students select the same suggested
topics as their projects as long as the codes and project reports are significantly distinctive.
The aim of this project is to apply at least THREE out of five techniques illustrated in the course (Deep Neural
Network; XGBoost; Cross-validation; Ensemble Model; Interpretability) to solve a financial problem.
Project Hints
All suggested topics are based on the computer lab examples with some changes and extensions. You can
easily find similar methods and models in the computer lab examples. Carefully studying those examples
and codes are crucial for understanding this course and complete the group coursework.
Suggested Topics
Forecasting Limit Order Book
Topic
Can we use deep neural network to forecast the high-frequency return at multiple horizon for stocks using
their limit order book information?
Data
10-level high frequency Limit Order Book of five stocks: Apple, Amazon, Intel, Microsoft, and Google on 21st
June 2012. Data size from 40MB to 100+MB. You can select to use part of the data.
Method
You may define the following features:are the ask and bid price of 10 levels (𝑖 = 1, … ,10), and w**7;w**5;
𝑖,𝑎
and w**7;w**5;
𝑖,𝑏
are the volume of 10 levels
(𝑖 = 1, … ,10). w**4;w**5;
𝐿𝑂w**; ∈ **7;40
2) Bid-Ask Order Flow (OF)
𝑏𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 > 𝑏w**5;−1
𝑖
w**7;w**5;
𝑖,𝑏 − w**7;w**5;−1
𝑖,𝑏
,𝑖𝑓 𝑏w**5;
𝑖 = 𝑏w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 < 𝑏w**5;−1
𝑖
𝑎𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 > 𝑎w**5;−1
𝑖
w**7;w**5;
𝑖,𝑎 − w**7;w**5;−1
𝑖,𝑎
,𝑖𝑓 𝑎w**5;
𝑖 = 𝑎w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 < 𝑎w**5;−1
𝑖
𝑂𝐹𝑖 ∈ **7;20
3) Order Flow Imbalance (OFI)
𝑂𝐹𝐼w**5; = 𝑏𝑂𝐹w**5;,𝑖 − 𝑎𝑂𝐹w**5;,𝑖
𝑂𝐹𝐼w**5; ∈ **7;20
The features can be defined as a vector
𝐗w**5; = (w**4;w**5;
𝐿𝑂w**;
, 𝑏𝑂𝐹w**5;,𝑖
, 𝑎𝑂𝐹w**5;,𝑖
,𝑂𝐹𝐼w**5;)
𝑇
The total dimension of feature vector 𝐗w**5;
is 40+20+10=70. 𝐗w**5; ∈ **7;70
.
The target is the the LOB mid-point return 𝐫w**5; over 𝐻 future horizons (𝐻 ≥ 1).
𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
This project is to estimate the function 𝑓(∙), that takes a sequence of historical 𝐗w**5; as input and generates
vector 𝐫w**5; as output:
𝐫w**5; = 𝑓(𝐗w**5;
,𝐗w**5;−1, 𝐗w**5;−2, … , 𝐗w**5;−𝑾)
Where 𝑾 is the look back window, 𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
𝑗 = 1, … , 𝐻.
This topic shall use LSTM as one of the potential models. You may try to train the LSTM model with the raw
70-dimension features 𝐗w**5; with different 𝑾. You may also extract the features with lower dimensions 𝑀 < 70
by autoencoder and then train the LSTM model using the extracted features with different 𝑾. You can provide
a comparison of those two methods.
This project shall also address the question of the feature importance.
Forecasting Stock Volatility
Topic
This topic comprises two subtopics, both pertaining to volatility forecasting. These subtopics are as follows:
1) Is stock volatility path-dependent?
2) Is stock volatility past-dependent?
To address these questions, you have the option to employ various machine learning models for forecasting
stock return volatility. This can be achieved either by utilising past returns (path-dependent) or past volatilities
(past-dependent).
Addressing either of the aforementioned sub-questions fulfils the coursework requirements for the
FML course. There is no need to complete work for both questions.
Data
In computer lab_3_1, we show the method to download stock prices from Yahoo Finance. This topic uses the
stock adjusted prices to calculate its volatility. You shall calculate the volatility as the standard deviation of the
Ү**; daily arithmetic returns, but it's essential to note that this volatility should be computed based on returns
within distinct, non-overlapping Ү**;-day intervals. Ү**; can be five or ten days. The following figure shows the
volatility calculation, where w**3;𝑖
is the daily return and ҵ**;𝑖
is the five-day volatility.
To successfully complete the coursework, you must choose a minimum of two stocks to assess one of the
aforementioned questions. The selection of these stocks should align with your personal interests.
Method
The topic is to investigate whether the volatility is path-dependent or past-dependent. But the length 𝐿 of
the path and past are unknown. You can select 𝐿 as 5, 10, 15, 20, or 40 days in the investigation and conclude
with a best 𝐿. Please decide by yourself what lengths 𝐿 to select in your coursework.
For the question of path-dependent, the input features contain the daily returns in past 𝐿 days:
𝐗w**5; = (w**3;w**5;−1, w**3;w**5;−2, w**3;w**5;−2, … , w**3;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
. Please be aware that the returns in 𝐗w**5;
shall not be included in the
calculation of the output volatility 𝑦w**5;
. As illustrated in figure below, to forecast the volatility ҵ**;w**5;
, you can use
the daily returns w**3;w**5;−1, w**3;w**5;−2,…, w**3;w**5;−𝐿
in past 𝐿 days.
For the question of past-dependent, the input features contain the previous 𝐿 volatilities:
𝐗w**5; = (ҵ**;w**5;−1, ҵ**;w**5;−2, ҵ**;w**5;−3, … , ҵ**;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
.
This topic shall use any of the machine learning models.
This topic may also answer what length 𝐿 generate the best forecasting results for the path- and pastdependence.
Forecasting High Frequency Cryptocurrency Return
Topic
This topic is to study how machine learning models perform in forecasting 15-minute ahead return in any of
the 14 popular cryptocurrencies.
Data
A dataset “cryptocurrency_prices.csv” of millions of rows of **minute frequency market data dating back to
2018 is provided for building the model. The dataset contains 14 popular cryptocurrencies, distinguished by
asset IDs. The details of the asset IDs and names are in the file “asset_details.csv”. You may choose any
cryptocurrencies to forecast. The “Weight” in the file is to calculate the whole market of cryptocurrency and
will be introduced in next section.
Asset_ID Weight Asset_Name
2 2.3978952** Bitcoin Cash
0 4.30**5093 Binance Coin
1 6.779921**7 Bitcoin
5 1.386294361 EOS.IO
7 2.079441542 Ethereum Classic
6 5.894402834 Ethereum
9 2.3978952** Litecoin
11 1.609437912 Monero
13 1.791759469 TRON
12 2.079441542 Stellar
3 4.**7192** Cardano
8 1.09**2289 IOTA
10 1.09**2289 Maker
4 3.555348061 Dogecoin
In the file “cryptocurrency_prices.csv”, the target has been calculated and provided as the column “Target”.
The target is derived from the log return over the future 15 minutes, for each cryptocurrency asset 𝑎 as the
residual of 15 minutes log return Targetw**5;
𝑎
. Noted that, in each row, the “Target” has already been aligned as
the future 15 minute return residual and is to be forecasted. (Target: Residual log-returns for the asset over
a 15 minute horizon.)
We can see the features included in the dataset as the following:
timestamp: All timestamps are returned as second Unix timestamps (the number of seconds elapsed since
1970-0**01 00:00:00.000 UTC). Timestamps in this dataset are multiple of 60, indicating minute-by-minute
data.
Asset_ID: The asset ID corresponding to one of the crytocurrencies (e.g. Asset_ID = 1 for Bitcoin). The mapping
from Asset_ID to crypto asset is contained in asset_details.csv.
Count: Total number of trades in the time interval (last minute).
Open: Opening price of the time interval (in USD).
High: Highest price reached during time interval (in USD).
Low: Lowest price reached during time interval (in USD).
Close: Closing price of the time interval (in USD).
Volume: Quantity of asset bought or sold, displayed in base currency USD.
VWAP: The average price of the asset over the time interval, weighted by volume. VWAP is an aggregated
form of trade data.
Method
You may define some additional features. For example, the past 5 minute log return, the past 5 minute
absolute log return, past 5 minute highest, past 5 minute lowest, etc.
You may try simple models, i.e., linear tree, and complex models, i.e., LSTM and compare their forecasting
performance.
If using LSTM, you may also study what length of the looking back window provide the best forecasting
performance.
In addition, the feature importance shall also be studied to show which features contribute to the stock relative
performance in the future the best.
Appendix
This appendix introduces how the target is calculated.
The log return at time w**5; for asset 𝑎 is calculated as:
𝑅w**5;
𝑎 = log (
𝑃w**5;+16
𝑎
𝑃w**5;+1
𝑎 )
As the crypto asset returns are highly correlated, forecasting returns for individual asset shall remove the
market signal from individual asset returns. Therefore, the weighted average cryptocurrency market return 𝑀w**5;
is defined as:
is the weight for each cryptocurrency and is defined in the column “Weight” in the file
“asset_details.csv”.
Then, a beta is calculated for each asset ҵ**;
Where the bracket &#**01;∙&#**02; calculate the rolling window average over the past 3750 minute windows.
Then, a regression residual is defined as the target for each asset Targetw**5;
BUT, you don’t need to do this calculation. The target values have been calculated and provided in the 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 







 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓大使館周末上班嗎 大使館上班時間是什么時候
  • 下一篇:QBUS6820代做、Python編程語言代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩成人免费看| 亚洲精选在线视频| 久久久久久久久久电影| 欧美性生活大片视频| 日韩欧美一区二区视频| 婷婷久久综合九色综合绿巨人| 蜜臀精品一区二区三区在线观看| 色婷婷国产精品综合在线观看| 欧美三级中文字| 国产精品国产三级国产aⅴ原创| 欧美专区日韩专区| 久久网站热最新地址| 婷婷六月综合网| 欧美日韩精品欧美日韩精品一 | 蜜桃精品视频在线观看| 一区二区三区不卡视频在线观看| 精品一区二区三区在线播放视频| 欧美日韩一区二区欧美激情| 欧美猛男超大videosgay| 亚洲欧洲韩国日本视频| 亚洲另类春色国产| av成人免费在线观看| 欧洲日韩一区二区三区| 国产精品对白交换视频| 久久精品免费观看| 69堂精品视频| 蜜桃视频一区二区| heyzo一本久久综合| 亚洲欧洲色图综合| 91同城在线观看| 欧美一区二区三区婷婷月色| 亚洲va欧美va人人爽| 日韩一区二区三区四区| 久久 天天综合| 久久人人超碰精品| 欧美日韩久久久一区| 日韩精品一级中文字幕精品视频免费观看 | 欧美日韩大陆在线| 国产精品久久久久久久久果冻传媒 | 亚洲天堂免费在线观看视频| 菠萝蜜视频在线观看一区| 国产麻豆成人传媒免费观看| 亚洲综合男人的天堂| 91 com成人网| 国产成人8x视频一区二区| 99国产精品国产精品毛片| 久久精品国产精品亚洲红杏| 久久免费视频色| 色婷婷av一区二区三区gif| 久久精品一区蜜桃臀影院| 成人av综合一区| 午夜精品免费在线观看| 夜夜嗨av一区二区三区网页| 国模少妇一区二区三区| 国产精品人人做人人爽人人添| 在线观看日韩精品| 国产一区二区三区观看| 91在线视频网址| 国产不卡免费视频| 日韩电影网1区2区| 日韩美女一区二区三区| 成人小视频免费在线观看| 日本国产一区二区| 久久国产视频网| 欧美视频一二三区| 中文字幕中文乱码欧美一区二区| 在线观看三级视频欧美| 一区二区欧美国产| 欧美日本一道本在线视频| 精品一区二区精品| 亚洲一区二区三区四区中文字幕 | 国产精品久久久久影院| 国产999精品久久| 欧美国产亚洲另类动漫| 欧美日韩1234| 日韩国产精品大片| 99re免费视频精品全部| 亚洲狠狠丁香婷婷综合久久久| 欧美另类videos死尸| 91年精品国产| 精品美女一区二区| 色婷婷亚洲精品| 午夜激情一区二区| 亚洲免费在线观看| 国产一区三区三区| 92精品国产成人观看免费| 成人免费视频视频| 7777精品伊人久久久大香线蕉的| 首页综合国产亚洲丝袜| 久久精品人人做人人综合| 91官网在线观看| 国产suv精品一区二区883| 久久精品视频在线免费观看| 午夜欧美在线一二页| 亚洲人一二三区| 久久 天天综合| 亚洲欧美在线aaa| 69久久99精品久久久久婷婷| 一个色在线综合| 亚洲精品成人悠悠色影视| 欧美国产视频在线| 欧美成人艳星乳罩| 日韩一区二区三区四区五区六区| 91精品国产综合久久久久久久| 日产国产高清一区二区三区| 日韩欧美国产综合一区 | 在线视频欧美区| 日本vs亚洲vs韩国一区三区| 亚洲视频精选在线| 国产精品久久久久久久久晋中| 国产亚洲欧美一级| 老鸭窝一区二区久久精品| 加勒比av一区二区| 国产精品自拍毛片| 色哟哟一区二区在线观看| 久久久久久99精品| 国产欧美视频在线观看| 亚洲视频你懂的| 成人午夜精品一区二区三区| 国产精品毛片久久久久久| 91精品国产高清一区二区三区蜜臀| 国产亚洲欧洲997久久综合| 亚洲欧美自拍偷拍色图| 欧美va亚洲va| 无吗不卡中文字幕| 国产精品1区二区.| 欧美中文字幕一二三区视频| 国产一区二区不卡| 日本韩国一区二区三区| 欧美一区二区黄色| 欧美日韩国产美| 久久久青草青青国产亚洲免观| 不卡免费追剧大全电视剧网站| 欧美日韩美少妇| 久久青草国产手机看片福利盒子 | 国产午夜精品久久久久久久| 91首页免费视频| 久久综合久久综合九色| 亚洲精品午夜久久久| 中文一区一区三区高中清不卡| 精品久久五月天| 亚洲一区中文日韩| 国产成人午夜片在线观看高清观看| 26uuu亚洲婷婷狠狠天堂| 亚洲电影在线播放| 国产网红主播福利一区二区| 亚洲超碰97人人做人人爱| av电影天堂一区二区在线观看| 久久新电视剧免费观看| 免费观看成人鲁鲁鲁鲁鲁视频| 色诱亚洲精品久久久久久| 欧美精品一区二区三区久久久| 国产成人久久精品77777最新版本| 国产精品亚洲人在线观看| 亚洲图片一区二区| 51午夜精品国产| 日韩一区二区免费电影| 视频一区二区三区中文字幕| 国产欧美一区二区精品性色超碰| 午夜欧美2019年伦理| 一个色妞综合视频在线观看| 不卡电影免费在线播放一区| 亚洲欧美国产毛片在线| 久久久精品影视| 韩日精品视频一区| 精品久久久久久最新网址| 青青草97国产精品免费观看无弹窗版| 91视频免费看| 亚洲男人的天堂网| 久久综合九色综合97婷婷| 黑人巨大精品欧美黑白配亚洲 | 国产精品热久久久久夜色精品三区 | 91久久国产综合久久| 日韩欧美色电影| 欧美bbbbb| 欧美成人艳星乳罩| 国产日产欧美精品一区二区三区| 精品一区二区免费| 国产精品人人做人人爽人人添| 色综合咪咪久久| 欧美日韩色综合| 久久精品国产一区二区三| 久久影院午夜论| 欧美丝袜丝交足nylons| 亚洲一区二区三区美女| 国产尤物一区二区| 1区2区3区精品视频| 色国产综合视频| 99久久夜色精品国产网站| 国产麻豆精品视频| 国产亲近乱来精品视频| 成人听书哪个软件好| 一级日本不卡的影视| 成人理论电影网| 亚洲视频一区二区免费在线观看 | 欧美喷潮久久久xxxxx| 日本一区中文字幕| 91丨九色丨蝌蚪富婆spa| 一区二区三区.www| 91.成人天堂一区|