99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

Ac.F633代做、Python程序語(yǔ)言代寫

時(shí)間:2024-04-09  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Ac.F633 - Python Programming Final Individual Project
Ac.F633 - Python Programming for Data Analysis
Manh Pham
Final Individual Project
20 March 2024 noon/12pm to 10 April 2024 noon/12pm (UK time)
This assignment contains one question worth 100 marks and constitutes 60% of the
total marks for this course.
You are required to submit to Moodle a SINGLE .zip folder containing a single Jupyter Notebook .ipynb file OR a single Python script .py file, together with
any supporting .csv files (e.g. input data files. However, do NOT include the
‘IBM 202001.csv.gz’ data file as it is large and may slow down the upload and submission) AND a signed coursework coversheet. The name of this folder should be
your student ID or library card number (e.g. 12345678.zip, where 12345678 is your
student ID).
In your answer script, either Jupyter Notebook .ipynb file or Python .py file, you
do not have to retype the question for each task. However, you must clearly label
which task (e.g. 1.1, 1.2, etc) your subsequent code is related to, either by using a
markdown cell (for .ipynb file) or by using the comments (e.g. #1.1 or ‘‘‘1.1’’’
for .py file). Provide only ONE answer to each task. If you have more than one
method to answer a task, choose one that you think is best and most efficient. If
multiple answers are provided for a task, only the first answer will be marked.
Your submission .zip folder MUST be submitted electronically via Moodle by the
10 April 2024 noon/12pm (UK time). Email submissions will NOT be considered. If you have any issues with uploading and submitting your work to Moodle,
please email Carole Holroyd at c.holroyd@lancaster.ac.uk BEFORE the deadline
for assistance with your submission.
The following penalties will be applied to all coursework that is submitted after the
specified submission date:
Up to 3 days late - deduction of 10 marks
Beyond 3 days late - no marks awarded
Good Luck!
1
Ac.F633 - Python Programming Final Individual Project
Question 1:
Task 1: High-frequency Finance (Σ = 30 marks)
The data file ‘IBM 202001.csv.gz’ contains the tick-by-tick transaction data for
stock IBM in January 2020, with the following information:
Fields Definitions
DATE Date of transaction
TIME M Time of transaction (seconds since mid-night)
SYM ROOT Security symbol root
EX Exchange where the transaction was executed
SIZE Transaction size
PRICE Transaction price
NBO Ask price (National Best Offer)
NBB Bid price (National Best Bid)
NBOqty Ask size
NBBqty Bid size
BuySell Buy/Sell indicator (1 for buys, -1 for sells)
Import the data file into Python and perform the following tasks:
1.1: Write code to perform the filtering steps below in the following order: (15 marks)
F1: Remove entries with either transaction price, transaction size, ask price,
ask size, bid price or bid size ≤ 0
F2: Remove entries with bid-ask spread (i.e. ask price - bid price) ≤ 0
F3: Aggregate entries that are (a) executed at the same date time (i.e. same
‘DATE’ and ‘TIME M’), (b) executed on the same exchange, and (c) of
the same buy/sell indicator, into a single transaction with the median
transaction price, median ask price, median bid price, sum transaction
size, sum ask size and sum bid size.
F4: Remove entries for which the bid-ask spread is more that 50 times the
median bid-ask spread on each day
F5: Remove entries with the transaction price that is either above the ask
price plus the bid-ask spread, or below the bid price minus the bid-ask
spread
Create a data frame called summary of the following format that shows the
number and proportion of entries removed by each of the above filtering steps.
The proportions (in %) are calculated as the number of entries removed divided
by the original number of entries (before any filtering).
F1 F2 F3 F4 F5
Number
Proportion
Here, F1, F2, F3, F4 and F5 are the columns corresponding to the above 5
filtering rules, and Number and Proportion are the row indices of the data
frame.
2
Ac.F633 - Python Programming Final Individual Project
1.2: Using the cleaned data from Task 1.1, write code to compute Realized
Volatility (RV), Bipower Variation (BV) and Truncated Realized Volatility
(TRV) measures (defined in the lectures) for each trading day in the sample
using different sampling frequencies including 1 second (1s), 2s, 3s, 4s, 5s, 10s,
15s, 20s, 30s, 40s, 50s, 1 minute (1min), 2min, 3min, 4min, 5min, 6min, 7min,
8min, 9min, 10min, 15min, 20min and 30min. The required outputs are 3
data frames RVdf, BVdf and TRVdf (for Realized Volatility, Bipower Variation
and Truncated Realized Volatility respectively), each having columns being
the above sampling frequencies and row index being the unique dates in the
sample. (10 marks)
1.3: Use results in Task 1.2, write code to produce a **by-3 subplot figure that
shows the ‘volatility signature plot’ for RV, BV and TRV. Scale (i.e. multiply)
the RVs, BVs and TRVs by 104 when making the plots. Your figure should
look similar to the following.
0 500 1000 1500
Sampling frequency (secs)
1.0
1.5
2.0
2.5
A
v
era
g
e
d
R
V (x10
4
)
RV signature plot
0 500 1000 1500
Sampling frequency (secs)
0.6
0.8
1.0
1.2
1.4
A
v
era
g
e
d
B
V (x10
4
)
BV signature plot
0 500 1000 1500
Sampling frequency (secs)
0.5
0.6
0.7
0.8
0.9
1.0
A
v
era
g
e
d
T
R
V (x10
4
)
TRV signature plot
(5 marks)
Task 2: Return-Volatility Modelling (Σ = 25 marks)
Refer back to the csv data file ‘DowJones-Feb2022.csv’ that lists the constituents of the Dow Jones Industrial Average (DJIA) index as of 9 February
2022 that was investigated in the group project. Import the data file into
Python.
Using your student ID or library card number (e.g. 12345678) as a random
seed, draw a random sample of 2 stocks (i.e. tickers) from the DJIA index
excluding stock DOW.1
Import daily Adjusted Close (Adj Close) prices for
both stocks between 01/01/2010 and 31/12/2023 from Yahoo Finance. Compute the log daily returns (in %) for both stocks and drop days with NaN
returns. Perform the following tasks.
2.1: Using data between 01/01/2010 and 31/12/2020 as in-sample data, write
code to find the best-fitted ARMA(p, q) model for returns of each stock that
minimizes AIC, with p and q no greater than 3. Print the best-fitted ARMA(p, q)
output and a statement similar to the following for your stock sample.
Best-fitted ARMA model for WBA: ARMA(2,2) - AIC = 11036.8642
Best-fitted ARMA model for WMT: ARMA(2,3) - AIC = 8810.4277 (5 marks)
1DOW only started trading on 20/03/2019
3
Ac.F633 - Python Programming Final Individual Project
2.2: Write code to plot a 2-by-4 subplot figure that includes the following diagnostics for the best-fitted ARMA model found in Task 2.1:
Row 1: (i) Time series plot of the standardized residuals, (ii) histogram of
the standardized residuals, fitted with a kernel density estimate and the
density of a standard normal distribution, (iii) ACF of the standardized
residuals, and (iv) ACF of the squared standardized residuals.
Row 2: The same subplots for the second stock.
Your figure should look similar to the following for your sample of stocks.
Comment on what you observe from the plots. (6 marks)
2010 2012 2014 2016 2018 2020
Date
8
6
4
2
0
2
4
6
ARMA(2,2) Standardized residuals-WBA
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Density
Distribution of standardized residuals
N(0,1)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2010 2012 2014 2016 2018 2020
Date
7.5
5.0
2.5
0.0
2.5
5.0
7.5
ARMA(2,3) Standardized residuals-WMT
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Density
Distribution of standardized residuals
N(0,1)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2.3: Use the same in-sample data as in Task 2.1, write code to find the bestfitted AR(p)-GARCH(p

, q∗
) model with Student’s t errors for returns of each
stock that minimizes AIC, where p is fixed at the AR lag order found in
Task 2.1, and p
∗ and q
∗ are no greater than 3. Print the best-fitted AR(p)-
GARCH(p

, q∗
) output and a statement similar to the following for your stock
sample.
Best-fitted AR(p)-GARCH(p*,q*) model for WBA: AR(2)-GARCH(1,1) - AIC
= 10137.8509
Best-fitted AR(p)-GARCH(p*,q*) model for WMT: AR(2)-GARCH(3,0) - AIC
= 7743.** (5 marks)
2.4: Write code to plot a 2-by-4 subplot figure that includes the following diagnostics for the best-fitted AR-GARCH model found in Task 2.3:
Row 1: (i) Time series plot of the standardized residuals, (ii) histogram of
the standardized residuals, fitted with a kernel density estimate and the
density of a fitted Student’s t distribution, (iii) ACF of the standardized
residuals, and (iv) ACF of the squared standardized residuals.
Row 2: The same subplots for the second stock.
Your figure should look similar to the following for your sample of stocks.
Comment on what you observe from the plots. (6 marks)
4
Ac.F633 - Python Programming Final Individual Project
2010 2012 2014 2016 2018 2020
Date
10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5
AR(2)-GARCH(1,1) Standardized residuals-WBA
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Density
Distribution of standardized residuals
t(df=3.7)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2010 2012 2014 2016 2018 2020
Date
10
5
0
5
10
AR(2)-GARCH(3,0) Standardized residuals-WMT
3 2 1 0 1 2 3
0.0
0.1
0.2
0.3
0.4
0.5
Density
Distribution of standardized residuals
t(df=3.9)
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
ACF of standardized residuals
0 5 10 15 20 25 30 35
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00 ACF of standardized residuals squared
2.5: Write code to plot a **by-2 subplot figure that shows the fitted conditional
volatility implied by the best-fitted AR(p)-GARCH(p

, q∗
) model found in
Task 2.3 against that implied by the best-fitted ARMA(p, q) model found in
Task 2.1 for each stock in your sample. Your figure should look similar to the
following.
2010
2012
2014
2016
2018
2020
Date
1
2
3
4
5
6
7
Fitted conditional volatility for stock WBA
AR(2)-GARCH(1,1)
ARMA(2,2)
2010
2012
2014
2016
2018
2020
Date
1
2
3
4
5
6
Fitted conditional volatility for stock WMT
AR(2)-GARCH(3,0)
ARMA(2,3)
(3 marks)
Task 3: Return-Volatility Forecasting (Σ = 25 marks)
3.1: Use data between 01/01/2021 and 31/12/2023 as out-of-sample data, write
code to compute one-step forecasts, together with 95% confidence interval
(CI), for the returns of each stock using the respective best-fitted ARMA(p, q)
model found in Task 2.1. You should extend the in-sample data by one observation each time it becomes available and apply the fitted ARMA(p, q) model
to the extended sample to produce one-step forecasts. Do NOT refit the
ARMA(p, q) model for each extending window.2 For each stock, the forecast
output is a data frame with 3 columns f, fl and fu corresponding to the
one-step forecasts, 95% CI lower bounds, and 95% CI upper bounds. (5 marks)
3.2: Write code to plot a **by-2 subplot figure showing the one-step return
forecasts found in Task 3.1 against the true values during the out-of-sample
2Refitting the model each time a new observation comes generally gives better forecasts. However,
it slows down the program considerably so we do not pursue it here.
5
Ac.F633 - Python Programming Final Individual Project
period for both stocks in your sample. Also show the 95% confidence interval
of the return forecasts. Your figure should look similar to the following.
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5
ARMA(2,2) One-step return forecasts - WBA
Observed
Forecasts
95% IC
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
12.5
10.0
7.5
5.0
2.5
0.0
2.5
5.0
ARMA(2,3) One-step return forecasts - WMT
Observed
Forecasts
95% IC
(3 marks)
3.3: Write code to produce one-step analytic forecasts, together with 95%
confidence interval, for the returns of each stock using respective best-fitted
AR(p)-GARCH(p

, q∗
) model found in Task 2.3. For each stock, the forecast
output is a data frame with 3 columns f, fl and fu corresponding to the
one-step forecasts, 95% CI lower bounds, and 95% CI upper bounds. (4 marks)
3.4: Write code to plot a **by-2 subplot figure showing the one-step return
forecasts found in Task 3.3 against the true values during the out-of-sample
period for both stocks in your sample. Also show the 95% confidence interval
of the return forecasts. Your figure should look similar to the following.
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
15
10
5
0
5
10
15
AR(2)-GARCH(1,1) One-step return forecasts - WBA
Observed
Forecasts
95% IC
202**05
202**09
2022-01
2022-05
2022-09
2023-01
2023-05
2023-09
Date
15
10
5
0
5
10
15
AR(2)-GARCH(3,0) One-step return forecasts - WMT
Observed
Forecasts
95% IC (3 marks)
3.5: Denote by et+h|t = yt+h − ybt+h|t
the h-step forecast error at time t, which
is the difference between the observed value yt+h and an h-step forecast ybt+h|t
produced by a forecast model. Four popular metrics to quantify the accuracy
of the forecasts in an out-of-sample period with T
′ observations are:
1. Mean Absolute Error: MAE = 1
T′
PT

t=1 |et+h|t
|
2. Mean Square Error: MSE = 1
T′
PT

t=1 e
2
t+h|t
3. Mean Absolute Percentage Error: MAPE = 1
T′
PT

t=1 |et+h|t/yt+h|
4. Mean Absolute Scaled Error: MASE = 1
T′
PT

t=1





et+h|t
1
T′−1
PT′
t=2 |yt − yt−1|





.
6
Ac.F633 - Python Programming Final Individual Project
The closer the above measures are to zero, the more accurate the forecasts.
Now, write code to compute the four above forecast accuracy measures for
one-step return forecasts produced by the best-fitted ARMA(p,q) and AR(p)-
GARCH(p

,q

) models for each stock in your sample. For each stock, produce
a data frame containing the forecast accuracy measures of a similar format
to the following, with columns being the names of the above four accuracy
measures and index being the names of the best-fitted ARMA and AR-GARCH
model:
MAE MSE MAPE MASE
ARMA(2,2)
AR(2)-GARCH(1,1)
Print a statement similar to the following for your stock sample:
For WBA:
Measures that ARMA(2,2) model produces smaller than AR(2)-GARCH(1,1)
model:
Measures that AR(2)-GARCH(1,1) model produces smaller than ARMA(2,2)
model: MAE, MSE, MAPE, MASE. (5 marks)
3.6: Using a 5% significance level, conduct the Diebold-Mariano test for each
stock in your sample to test if the one-step return forecasts produced by the
best-fitted ARMA(p,q) and AR(p)-GARCH(p

,q

) models are equally accurate
based on the three accuracy measures in Task 3.5. For each stock, produce a
data frame containing the forecast accuracy measures of a similar format to
the following:
MAE MSE MAPE MASE
ARMA(2,2)
AR(2)-GARCH(1,1)
DMm
pvalue
where ‘DMm’ is the Harvey, Leybourne & Newbold (1997) modified DieboldMariano test statistic (defined in the lecture), and ‘pvalue’ is the p-value associated with the DMm statistic. Draw and print conclusions whether the bestfitted ARMA(p,q) model produces equally accurate, significantly less accurate
or significantly more accurate one-step return forecasts than the best-fitted
AR(p)-GARCH(p

,q

) model based on each accuracy measure for your stock
sample.
Your printed conclusions should look similar to the following:
For WBA:
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MAE.
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MSE.
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MAPE.
Model ARMA(2,2) produces significantly less accurate one-step return
forecasts than model AR(2)-GARCH(1,1) based on MASE. (5 marks)
7
Ac.F633 - Python Programming Final Individual Project
Task 4: (Σ = 20 marks)
These marks will go to programs that are well structured, intuitive to use (i.e.
provide sufficient comments for me to follow and are straightforward for me
to run your code), generalisable (i.e. they can be applied to different sets of
stocks (2 or more)) and elegant (i.e. code is neat and shows some degree of
efficiency).
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:菲律賓回國(guó)探親簽證多久出結(jié)果 Q1辦理的材料匯總
  • 下一篇:COMP3334代做、SQL設(shè)計(jì)編程代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品久久久久影院色老大| 在线一区二区三区四区| 国产精品天干天干在观线| 3d成人动漫网站| 欧美视频一区二区三区四区| 国产精品一区二区在线播放| 久久国产精品免费| 国产麻豆精品theporn| 欧美a级理论片| 寂寞少妇一区二区三区| 国产成人精品一区二| 国产99久久久国产精品免费看| 国产不卡免费视频| 一本色道a无线码一区v| 欧美日韩免费电影| 欧美精品一区二区三| 国产精品水嫩水嫩| 午夜视频在线观看一区| 日本网站在线观看一区二区三区| 人妖欧美一区二区| 91视视频在线观看入口直接观看www | 久久综合久久99| 久久亚洲综合av| 亚洲自拍偷拍九九九| 激情综合色播激情啊| 99riav一区二区三区| 日韩一区二区三| 樱花影视一区二区| 国产精品18久久久久久久久久久久 | 风间由美一区二区三区在线观看 | 久久久99久久精品欧美| 亚洲欧美一区二区三区极速播放 | 欧美亚洲综合另类| 久久精品亚洲精品国产欧美kt∨ | 欧美日本一道本| 中文在线资源观看网站视频免费不卡| 夜夜揉揉日日人人青青一国产精品| 日本不卡123| 欧美精三区欧美精三区| 国产精品看片你懂得| 国产精品99久久不卡二区| 日韩一区二区三| 日产国产高清一区二区三区| 在线观看91视频| 亚洲美女在线一区| jlzzjlzz亚洲女人18| 亚洲欧美日韩一区| 欧美在线观看禁18| 亚洲一级在线观看| 日韩一区二区三区视频在线观看| 色美美综合视频| 亚洲国产色一区| 亚洲h在线观看| 午夜亚洲国产au精品一区二区| 国产精品乱码久久久久久| 国产日韩三级在线| 国产欧美日韩激情| 精品欧美一区二区三区精品久久| 精品国产在天天线2019| 亚洲精品高清在线| 91视频一区二区三区| 国产精品久久久久久久久免费丝袜 | 国产精品国产精品国产专区不蜜 | 男男视频亚洲欧美| 久久久久久久久久久久久夜| 欧美aaa在线| 日韩免费一区二区三区在线播放| 狠狠色综合播放一区二区| 国产精品青草综合久久久久99| 97久久精品人人澡人人爽| 国内精品嫩模私拍在线| 亚洲成av人片在www色猫咪| 亚洲精品一区二区三区香蕉| 欧美影片第一页| 国产91色综合久久免费分享| 丝袜亚洲另类欧美| 一区二区三区精品视频| 国产精品不卡在线| 久久综合九色综合97_久久久| 欧美在线制服丝袜| 日本乱码高清不卡字幕| 99re亚洲国产精品| 不卡的av中国片| 99vv1com这只有精品| 色综合一区二区| 色综合久久综合中文综合网| 在线一区二区三区做爰视频网站| 一本一道综合狠狠老| 99国产欧美久久久精品| 国产一区二区剧情av在线| 亚洲h在线观看| 亚洲一级二级三级| 日本亚洲天堂网| 国产精品一区二区果冻传媒| 成人综合日日夜夜| 色拍拍在线精品视频8848| 欧美日韩国产精品成人| 欧美大片在线观看一区二区| 久久综合国产精品| 亚洲一区二区三区四区在线免费观看 | 一区二区三区av电影| 久久精品国产澳门| 色综合久久中文综合久久牛| 日韩一级欧美一级| 日韩毛片高清在线播放| 亚洲一区二区三区四区在线观看| 国内精品伊人久久久久av影院| 91社区在线播放| 欧美成人r级一区二区三区| 亚洲欧美另类在线| 国产精品538一区二区在线| 欧美丰满高潮xxxx喷水动漫| 欧美激情在线看| 秋霞av亚洲一区二区三| 欧美日韩综合不卡| 亚洲欧美日韩小说| 成人综合日日夜夜| 久久精品一区二区三区不卡牛牛| 伊人色综合久久天天人手人婷| 国产成人av电影在线| 日韩精品中文字幕在线一区| 亚洲亚洲人成综合网络| 91美女在线观看| 亚洲精品国产视频| heyzo一本久久综合| 国产精品午夜在线| 99久久精品情趣| 国产精品国产三级国产普通话三级| 高清shemale亚洲人妖| 中文字幕五月欧美| 在线免费不卡视频| 美女脱光内衣内裤视频久久网站| 欧美大片一区二区| 不卡免费追剧大全电视剧网站| 国产精品美女久久久久av爽李琼| 色综合视频一区二区三区高清| 亚洲摸摸操操av| 欧美成人在线直播| 91蝌蚪porny九色| 日本不卡一区二区三区高清视频| 欧美成人精品福利| 欧美在线free| 国产真实乱子伦精品视频| 亚洲男同性视频| 91精品国产入口| 色哟哟亚洲精品| 久久黄色级2电影| 亚洲国产精品一区二区www在线| 日韩一区二区三区四区五区六区 | 2020国产成人综合网| 色素色在线综合| 国产福利91精品一区| 美国十次综合导航| 亚洲精品午夜久久久| 国产欧美日韩在线视频| 制服丝袜在线91| 91成人在线精品| 在线视频国产一区| 国产精品一级片| 国产精品综合网| 成人一区在线看| 成人avav影音| 成人综合婷婷国产精品久久| 国产精品影视在线观看| 国产麻豆午夜三级精品| 精品午夜久久福利影院| 精品一区二区三区久久久| 精品一区在线看| 国产自产视频一区二区三区| 久久99国内精品| av一区二区久久| 色综合av在线| 欧美猛男超大videosgay| 欧美丝袜第三区| 91精品国产91久久久久久一区二区| 6080国产精品一区二区| 久久人人爽人人爽| 国产精品卡一卡二| 午夜伦理一区二区| 成人免费电影视频| 欧美男生操女生| 国产日产亚洲精品系列| 一区二区三区日韩在线观看| 免费精品99久久国产综合精品| 国产一区欧美一区| 欧美精品电影在线播放| 欧美国产在线观看| 奇米888四色在线精品| 色久综合一二码| www久久精品| 久久精品国产99| 欧美艳星brazzers| 亚洲精品国久久99热| 国产成人av网站| 精品国产污污免费网站入口 | 这里只有精品电影| www.色综合.com| 欧美精三区欧美精三区| 337p粉嫩大胆色噜噜噜噜亚洲| 国产精品视频线看|