99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CEG5304代做、代寫(xiě)Java/c++編程語(yǔ)言

時(shí)間:2024-04-11  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Project #2 for CEG5304: Generating Images through Prompting and Diffusion-based Models.
Spring (Semester 2), AY 202**024
In this exploratory project, you are to explore how to generate (realistic) images via diffusion-based models (such as DALLE and Stable Diffusion) through prompting, in particular hard prompting. To recall and recap the concepts of prompting, prompt engineering, LLVM (Large Language Vision Models), and LMM (Large Multi-modal Models), please refer to the slides on Week 5 (“Lect5-DL_prompt.pdf”).
Before beginning this project, please read the following instructions carefully, failure to comply with the instructions may be penalized:
1.This project does not involve compulsory coding, complete your project with this given Word document file by filling in the “TO FILL” spaces. Save the completed file as a PDF file for submission. Please do NOT modify anything (including this instruction) in your submission file.
2.The marking of this project is based on how detailed the description and discussion are over the given questions. To score, please make sure your descriptions and discussions are readable, and adequate visualizations are provided.
3.The marking of this project is NOT based on any evaluation criteria (e.g., PSNR) over the generated image. Generating a good image does NOT guarantee a high score.
4.You may use ChatGPT/Claude or any online LLM services for polishing. However, purely using these services for question answering is prohibited (and is actually very obvious). If it is suspected that you generate your answers holistically with these online services, your assignment may be considered as committing plagiarism.
5.Submit your completed PDF on Canvas before the deadline: 1759 SGT on 20 April 2024 (updated from the slides). Please note that the deadlines are strict and late submission will be deducted 10 points (out of 100) for every 24 hours.
6.The report must be done individually. You may discuss with your peers, but NO plagiarism is allowed. The University, College, Department, and the teaching team take plagiarism very seriously. An originality report may be generated from iThenticate when necessary. A zero mark will be given to anyone found plagiarizing and a formal report will be handed to the Department/College for further investigation.

Task 1: generating an image with Stable Diffusion (via Huggingface Spaces) and compare it with the objective real image. (60%)
In this task, you are to generate an image with the Stable Diffusion model in Huggingface Spaces. The link is provided here: CLICK ME. You can play with the different prompts and negative prompts (prompts that instructs the model NOT to generate something). Your objective is to generate an image that looks like the following image:

1a) First, select a rather coarse text prompt. A coarse text prompt may not include a lot of details but should be a good starting prompt to generate images towards our objective. An example could be “A Singaporean university campus with a courtyard.”. Display your generated image and its corresponding text prompt (as well as the negative prompt, if applicable) below: (10%)
TO FILL
TO FILL
1b) Describe, in detail, how the generated image is compared to the objective image. You may include the discussion such as the components in the objective image that is missing from the generated image, or anything generated that does not make sense in the real world. (20%)
TO FILL
TO FILL
Next, you are to improve the generated image with prompt engineering. Note that it is highly likely that you may still be unable to obtain the objective image. A good reference material for prompt engineering can be found here: PROMPT ENGINEERING. 
1c) Describe in detail how you improve your generated image. The description should include display of the generated images and their corresponding prompts, and detailed reasoning over the change in prompts. If the final improved image is generated with several iterations of prompt improvement, you should show each step in detail. I.e., you should display the result of each iteration of prompt change and discuss the result of each prompt change. You should also compare your improved image with both the first image you generated above, as well as the objective image. (30%)
TO FILL
TO FILL
TO FILL
Task 2: generating images with another diffusion-based model, DALL-E (mini-DALL-E, via Huggingface Spaces). (40%)
Stable Diffusion is not the only diffusion-based model that has the capability to generate good quality images. DALL-E is an alternative to Stable Diffusion. However, we are not to discuss the differences over these two models technically, but the differences over the generated images qualitatively (in a subjective manner). The link to generating with mini-DALL-E is provided here: MINI-DALL-E.
2a) You should first use the same prompt as you used in Task 1a and generate the image with mini-DALL-E. Display the generated image and compare, in detail, the new generated image with that generated by Stable Diffusion. (10%)
TO FILL
TO FILL
2b) Similar to what we performed for Stable Diffusion; you are to again improve the generated image with prompt engineering. Describe in detail how you improve your generated image. Similarly, if the final improved image is generated with several iterations of prompt improvement, you should show each step in detail. The description should include display of the generated images and their corresponding prompts, and detailed reasoning over the change in prompts. You should compare your improved image with both the first image you generated above, as well as the objective image.
In addition, you should also describe how the improvement is similar to or different from the previous improvement process with Stable Diffusion. (10%)
TO FILL
TO FILL
2c) From the generation process in Task 1 and Task 2, discuss the capabilities and limitations over image generation with off-the-shelf diffusion-based models and prompt engineering. You could further elaborate on possible alternatives or improvements that could generate images that are more realistic or similar to the objective image. (20%)
TO FILL
TO FILL

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:MCD4700代做、Python/c++編程語(yǔ)言代寫(xiě)
  • 下一篇:怎么申請(qǐng)菲律賓移民達(dá)沃??jī)r(jià)格多少
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 trae 豆包網(wǎng)頁(yè)版入口 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91久久线看在观草草青青| 国产精品久久影院| 精品久久五月天| 欧美aaaaa成人免费观看视频| 色综合久久久久综合| 国产精品久久久爽爽爽麻豆色哟哟| 国产最新精品免费| 国产亚洲欧美色| 成人avav影音| 日韩精品91亚洲二区在线观看 | 综合久久久久久| 欧美视频在线观看一区二区| 免费欧美日韩国产三级电影| 国产精品福利影院| 欧美日本一区二区三区四区| 国产麻豆精品95视频| 亚洲免费在线观看视频| 欧美一卡2卡三卡4卡5免费| 成人在线综合网| 五月开心婷婷久久| 亚洲柠檬福利资源导航| 久久久噜噜噜久久中文字幕色伊伊 | 美女一区二区久久| 亚洲欧美日韩中文播放| 精品国产99国产精品| 欧美日韩精品高清| 日本伦理一区二区| 99精品一区二区三区| 日本特黄久久久高潮 | 91麻豆免费视频| 高清视频一区二区| 久久激情综合网| 日韩不卡免费视频| 亚洲国产精品视频| 亚洲欧美在线视频| 亚洲视频一区在线| 亚洲欧美怡红院| 亚洲另类在线一区| 一区二区三区四区视频精品免费 | 欧美日韩国产经典色站一区二区三区| 国产成人av电影在线播放| 国产69精品久久99不卡| 一本到不卡精品视频在线观看| 国产精品美女久久久久aⅴ国产馆| 欧美系列在线观看| 在线视频欧美精品| 欧美精品一二三区| 2022国产精品视频| 国产精品网站在线播放| 亚洲欧美电影一区二区| 亚洲一级二级在线| 日韩高清国产一区在线| 成人性视频免费网站| 欧美日韩色一区| 国产精品久久久久久久久久久免费看| 亚洲精品美腿丝袜| 国产东北露脸精品视频| 亚洲国产综合91精品麻豆| 欧美老年两性高潮| 亚洲欧美日韩国产一区二区三区 | 51精品久久久久久久蜜臀| 久久精品欧美一区二区三区不卡| 中文无字幕一区二区三区| 麻豆视频一区二区| 欧美疯狂做受xxxx富婆| 亚洲精品乱码久久久久久黑人 | 久久久久国产精品厨房| 亚洲国产精品久久久久秋霞影院 | 欧美四级电影网| 亚洲免费观看高清完整版在线观看熊| 国产精品资源在线看| 337p粉嫩大胆色噜噜噜噜亚洲| 91福利资源站| 在线视频中文字幕一区二区| 国产精品久久久久永久免费观看| 久久97超碰国产精品超碰| 精品国产伦一区二区三区观看方式 | 日韩欧美一二区| 亚洲猫色日本管| 99精品视频在线观看| 国产欧美日韩视频一区二区| 六月丁香婷婷久久| 久久看人人爽人人| 国产福利不卡视频| 一区二区三区在线视频观看58| 日本韩国一区二区三区| 夜夜嗨av一区二区三区中文字幕| 欧美性受xxxx黑人xyx性爽| 五月婷婷激情综合| 欧美激情综合在线| 91精品国产综合久久久久久久 | 91国模大尺度私拍在线视频| 精品亚洲成a人| 天天综合网天天综合色| 中文字幕一区二区三区在线不卡| 久久久久亚洲综合| 久久99久久99精品免视看婷婷| 国产亚洲精品资源在线26u| 欧美日韩极品在线观看一区| 懂色av一区二区三区蜜臀| 五月婷婷欧美视频| 国产精品成人网| 亚洲欧洲99久久| 久久久一区二区| 久久―日本道色综合久久| 欧美日韩一区不卡| 精品污污网站免费看| 97se亚洲国产综合自在线不卡 | 国产精品电影一区二区| 91精品国产色综合久久不卡电影| aaa国产一区| 丁香桃色午夜亚洲一区二区三区| 国产综合一区二区| 国产成人免费在线观看| 成人国产精品免费网站| 大美女一区二区三区| 成人小视频免费在线观看| 99r精品视频| 欧美三级电影一区| 26uuu精品一区二区三区四区在线| 日韩久久精品一区| 亚洲图片激情小说| 久久精品国产一区二区三| 成人黄动漫网站免费app| 成人国产精品免费网站| 欧美日韩你懂得| 欧美激情综合五月色丁香| 一区二区在线看| 美女视频黄频大全不卡视频在线播放| 国产做a爰片久久毛片| 欧美中文字幕久久| 国产精品盗摄一区二区三区| 偷拍亚洲欧洲综合| 91色九色蝌蚪| 久久婷婷国产综合精品青草| 一区二区三区色| 91在线精品一区二区| 国产日韩欧美在线一区| 丝袜美腿高跟呻吟高潮一区| 国产精品白丝jk黑袜喷水| 欧美一区二区三级| 奇米精品一区二区三区四区| 在线视频一区二区免费| 有码一区二区三区| av网站免费线看精品| 中文字幕中文乱码欧美一区二区| 成人国产精品免费| 国产精品人成在线观看免费| 丁香六月久久综合狠狠色| 国产三级三级三级精品8ⅰ区| 九九九精品视频| 国产日韩影视精品| 国产激情一区二区三区| 中文字幕在线观看不卡视频| 日本高清免费不卡视频| 天堂影院一区二区| 欧美成人精品1314www| 精品一区二区免费| 国产欧美1区2区3区| 在线亚洲+欧美+日本专区| 亚洲国产成人高清精品| 精品国产乱码久久久久久久| 蓝色福利精品导航| 1024精品合集| 欧美亚洲高清一区二区三区不卡| 日韩毛片在线免费观看| 欧洲中文字幕精品| 狠狠色2019综合网| 136国产福利精品导航| 91麻豆精品91久久久久同性| 国产精品99精品久久免费| 亚洲国产aⅴ成人精品无吗| 欧美日韩亚洲另类| 成人亚洲一区二区一| 五月天激情综合| 亚洲欧美日韩国产成人精品影院| 欧美成人女星排名| 91在线码无精品| 不卡av在线网| 国产精品资源在线看| 午夜精品视频一区| 香港成人在线视频| 国产精品美女视频| 久久综合色一综合色88| 51午夜精品国产| 欧美日韩国产片| 51精品视频一区二区三区| 日韩一区二区三区在线观看| 欧美精品视频www在线观看| 欧美日韩久久不卡| 欧美自拍偷拍一区| 欧美日韩一区 二区 三区 久久精品| 99久久夜色精品国产网站| 国产一区二区主播在线| 日韩成人一区二区| 奇米四色…亚洲| 成人一级黄色片| 3atv在线一区二区三区| 精品99一区二区三区| 国产精品久久久久影院老司 |