99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 2XC3、代做 Python 設計編程

時間:2024-04-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Computer Science 2XC3: Final Project
This project will include a final report and your code. Your final report will have the following. You will
be submitting .py (NOT *.ipynb) files for this final project.
• Title page
• Table of Content
• Table of Figures
• An executive summary highlighting some of the main takeaways of your experiments/analysis
• An appendix explaining to the TA how to navigate your code.
For each experiment, include a clear section in your lab report which pertains to that experiment. The report should look professional and readable.
PLEASE NOTE: This is the complete Part I and II. Complete Parts 1 – 5 in group. Part 6 needs to be completed individual. Please refer to the plagiarism policy in Syllabus.
Part 1 : Single source shortest path algorithms
Part 1.1: In this part you will implement variation of Dijkstra’s algorithm. It is a popular shortest path algorithm where the current known shortest path to each node is updated once new path is identified. This updating is called relaxing and in a graph with 𝑛 nodes it can occur at most 𝑛 − 1 times. In this part implement a function dijkstra (graph, source, k) which takes the graph and source as an input and where each node can be relaxed on only k times where, 0 < 𝑘 < Ү**; − 1. This function returns a distance and path dictionary which maps a node (which is an integer) to the distance and the path (sequence of nodes).
Part 1.2: Consider the same restriction as previous and implement a variation of Bellman Ford’s algorithm. This means implement a function bellman_ford(graph, source, k) which take the graph and source as an input and finds the path where each node can be relaxed only k times, where, 0 < 𝑘 < Ү**; − 1. This function also returns a distance and path dictionary which maps a node (which is an integer) to the distance and the path (sequence of nodes).
Part 1.3: Design an experiment to analyze the performance of functions written in Part 1.1 and 1.2. You should consider factors like graph size, graph. density and value of k, that impact the algorithm performance in terms of its accuracy, time and space complexity.
Part 2: All-pair shortest path algorithm
Dijkstra’s and Bellman Ford’s are single source shortest path algorithms. However, many times we are faced with problems that require us to solve shortest path between all pairs. This means that the algorithm needs to find the shortest path from every possible source to every possible destination. For every pair of vertices u and v, we want to compute shortest path 𝑑𝑖w**4;w**5;𝑎𝑛𝑐Ү**;(w**6;, w**7;) and the second-to-last vertex on the shortest path w**1;w**3;Ү**;w**7;𝑖w**0;w**6;w**4;(w**6;, w**7;). How would you design an all-pair shortest path algorithm for both positive edge weights and negative edge weights? Implement a function that can address this. Dijkstra has complexity Ɵ(𝐸 + 𝑉𝑙w**0;𝑔𝑉), or Ɵ (𝑉2) if the graph is dense and Bellman-Ford has complexity Ɵ (𝑉𝐸) , or Ɵ(𝑉3) if the graph is dense. Knowing this, what would you conclude the complexity of your two algorithms to be for dense graphs? Explain your conclusion in your report. You do not need to verify this empirically.
      
Part 3: A* algorithm
In this part, you will analyze and experiment with a modification of Dijkstra’s algorithm called the A* (we will cover this algorithm in next lecture, but you are free to do your own research if you want to get started on it). The algorithm essentially, is an “informed” search algorithm or “best-first search”, and is helpful to find best path between two given nodes. Best path can be defined by shortest path, best time, or least cost. The most important feature of A* is a heuristic function that can control it’s behavior.
Part 3.1: Write a function A_Star (graph, source, destination, heuristic) which takes in a directed weighted graph, a sources node, a destination node , and a heuristic “function”. Assume h is a dictionary which takes in a node (an integer), and returns a float. Your method should return a 2-tuple where the first element is a predecessor dictionary, and the second element is the shortest path the algorithm determines from source to destination. This implementation should be using priority queue.
Part 3.2: In your report explain the following:
• What issues with Dijkstra’s algorithm is A* trying to address?
• How would you empirically test Dijkstra’s vs A*?
• If you generated an arbitrary heuristic function (like randomly generating weights), how would
Dijkstra’s algorithm compare to A*?
• What applications would you use A* instead of Dijkstra’s?
Part 4: Compare Shortest Path Algorithms
In this part, you will compare the performance of Dijkstra’s and A* algorithm. While generating random graphs can give some insights about how algorithms might be performing, not all algorithms can be assessed using randomly generated graphs, especially for A* algorithm where heuristic function is important. In this part you will compare the performance of the two algorithms on a real-world data set. Enclosed are a set of data files that contain data on London Subway system. The data describes the subway network with about 300 stations, and the lines represent the connections between them. Represent each station as a node in a graph, and the edge between stations should exists if two stations are connected. To find weights of different edges, you can use latitude and longitude for each station to find the distance travelled between the two stations This distance can serve as the weight for a given edge. Finally, to compute the heuristic function, you can use the physical direct distance (NOT the driving distance) between the source and a given station. Therefore, you can create a hashmap or a function, which serves as a heuristic function for A*, takes the input as a given station and returns the distance between source and the given station.
Once you have generated the weighted graph and the heuristic function, use it as an input to both A* and Dijkstra’s algorithm to compare their performance. It might be useful to check all pairs shortest paths, and compute the time taken by each algorithm for all combination of stations. Using the experiment design, answer the following questions:
• When does A* outperform Dijkstra? When are they comparable? Explain your observation why you might be seeing these results.
• What do you observe about stations which are 1) on the same lines, 2) on the adjacent lines, and 3) on the line which require several transfers?
• Using the “line” information provided in the dataset, compute how many lines the shortest path uses in your results/discussion?
    
 Figure 1: London Subway Map
Part 5: Organize your code as per UML diagram
Organize you code as per the below Unified Modelling Language (UML) diagram in Figure 2. Furthermore, consider the points listed below and discuss these points in a section labelled Part 4 in your report (where appropriate).
• Instead of re-writing A* algorithm for this part, treat the class from UML as an “adapter”.
• Discuss what design principles and patterns are being used in the diagram.
• The UML is limited in the sense that graph nodes are represented by the integers. How would you
alter the UML diagram to accommodate various needs such as nodes being represented Strings or carrying more information than their names.? Explain how you would change the design in Figure 2 to be robust to these potential changes.
• Discuss what other types of graphs we could have implement “Graph”. What other implementations exist?
 
 Figure 2: UML Diagram
Part 6: Unknown Algorithm (To work on Individually)
In the code posted with this document, you will find a w**6;𝑛𝑘𝑛w**0;w**8;𝑛() function. It takes a graph as input. Do some reverse engineering. Try to figure out what exactly this function is accomplishing. You should explore the possibility of testing it on graphs with negative edge weights (create some small graphs manually for this). Determine the complexity of this function by running some experiments as well as inspecting the code. Given what this code does, is the complexity surprising? Why or why not?
 Grade Breakup:
   Part 1: Single source shortest path algorithms Part 2: All-pair shortest path algorithm
Part 3: A* algorithm
Part 4: Compare Shortest Path Algorithms
Part 5: Organize your code as per UML diagram Part 6: Unknown Algorithm
Group 25 Group 15 Group 20 Group 30 Group 10
Individual 50
Part
Submission Type
Points
                     
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機打開當前頁
  • 上一篇:代做CSE 470、djava/Python 編程
  • 下一篇:CS 2550代做、代寫SQL設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美aaaaa成人免费观看视频| 国产欧美日韩在线视频| 日一区二区三区| 91免费看片在线观看| 美女网站色91| 亚洲免费观看在线视频| 欧美激情一二三区| 日韩一区二区三区四区| 99久久精品免费看| 国产在线视频一区二区三区| 日本三级亚洲精品| 偷拍日韩校园综合在线| 亚洲一区二区三区在线播放| 亚洲日本在线天堂| 国产精品麻豆欧美日韩ww| 久久久久久久久久久久久夜| 欧美一区二区三区成人| 色拍拍在线精品视频8848| jlzzjlzz亚洲女人18| 成人免费看的视频| 成人免费精品视频| 色婷婷激情综合| 欧美日韩视频在线一区二区| 欧美日韩www| 日韩一区二区在线观看视频| 日韩欧美电影一区| 精品三级在线看| 国产亚洲成aⅴ人片在线观看| 久久久久久久久久美女| 亚洲日本在线天堂| 天堂成人国产精品一区| 久久成人免费电影| 国产91高潮流白浆在线麻豆| 一本色道久久综合亚洲91| 欧美高清视频一二三区| 久久久久久久精| 综合分类小说区另类春色亚洲小说欧美| 亚洲人成在线观看一区二区| 亚洲亚洲精品在线观看| 国内精品久久久久影院色| 成人国产精品免费观看动漫 | 久久成人免费网站| 亚洲综合在线第一页| 日本不卡的三区四区五区| 国产成人精品免费一区二区| 色噜噜偷拍精品综合在线| 7878成人国产在线观看| 亚洲精品在线免费观看视频| 国产精品久久99| 日韩电影网1区2区| 成人av资源下载| 5858s免费视频成人| 国产日韩精品久久久| 亚洲一二三区在线观看| 国产sm精品调教视频网站| 欧美日韩一区二区三区高清 | 成人性生交大片免费看在线播放| 91蜜桃婷婷狠狠久久综合9色| 日韩欧美中文一区二区| 亚洲人成在线观看一区二区| 国产原创一区二区三区| 欧美日韩一区二区在线观看| 久久精品视频一区二区三区| 日韩 欧美一区二区三区| 99在线精品免费| 久久久久久免费毛片精品| 日本伊人精品一区二区三区观看方式 | 欧美成人aa大片| 亚洲一区二区中文在线| 不卡大黄网站免费看| 欧美xfplay| 亚洲一线二线三线久久久| 风流少妇一区二区| 久久日韩精品一区二区五区| 午夜私人影院久久久久| 91电影在线观看| 亚洲天堂精品视频| 处破女av一区二区| 久久精品人人爽人人爽| 久久国产精品第一页| 欧美一区二区免费视频| 亚洲成人综合网站| 在线免费av一区| 亚洲欧美一区二区三区国产精品 | 亚洲福利视频导航| 欧美系列在线观看| 亚洲欧美日韩一区二区| 92国产精品观看| 国产精品第一页第二页第三页| 国产高清成人在线| xfplay精品久久| 国产经典欧美精品| 国产欧美一区视频| 成人午夜在线免费| 中文字幕av资源一区| 99视频精品全部免费在线| 国产精品免费免费| 99精品久久只有精品| 亚洲综合色自拍一区| 制服丝袜亚洲色图| 日韩成人午夜精品| 日韩美女天天操| 国产精品综合二区| 国产精品天美传媒沈樵| eeuss国产一区二区三区| 一区二区三区高清在线| 欧美日本一区二区三区四区| 午夜视频在线观看一区| 精品国内二区三区| 国产成人精品免费一区二区| 18涩涩午夜精品.www| 欧美三级视频在线观看| 精品一区二区三区久久| 国产欧美1区2区3区| 色婷婷久久一区二区三区麻豆| 午夜私人影院久久久久| 久久午夜老司机| 色综合中文字幕国产| 亚洲三级在线看| 制服丝袜av成人在线看| 国产一区二区三区免费看| 亚洲欧美综合色| 欧美丰满一区二区免费视频| 国产九色sp调教91| 亚洲一区二区黄色| 国产蜜臀97一区二区三区| 欧美情侣在线播放| 99久久国产综合精品麻豆| 美女视频黄久久| 亚洲成人av中文| 国产精品成人免费在线| 日韩欧美国产综合| 在线精品视频免费观看| 国产成人在线免费| 久久激情五月婷婷| 亚洲一区在线观看免费观看电影高清| 久久精品人人做| 欧美va天堂va视频va在线| 欧美日韩国产综合久久| 97久久超碰国产精品电影| 蜜臀精品一区二区三区在线观看 | 亚洲高清视频在线| 国产精品乱码一区二区三区软件 | 日韩一区中文字幕| 久久综合九色综合欧美就去吻| 色综合久久综合网97色综合 | 国产精品亚洲综合一区在线观看| 国产精品九色蝌蚪自拍| 日韩女同互慰一区二区| 亚洲国产综合人成综合网站| 国产嫩草影院久久久久| 欧美一区二区视频在线观看| 欧美日韩精品欧美日韩精品| 国产精品主播直播| 亚洲成人av中文| 久久蜜桃av一区二区天堂| 日本午夜精品一区二区三区电影| 视频在线在亚洲| 日韩你懂的在线观看| 国产一区二区电影| 日韩一区在线播放| 精品人在线二区三区| 久草中文综合在线| 日韩久久一区二区| 久久这里都是精品| 午夜av一区二区三区| 精品国产成人系列| 欧美日韩在线播放一区| 成人动漫一区二区在线| 久久精品国产久精国产| 亚洲精品乱码久久久久久久久| 国产精品夫妻自拍| 亚洲色图一区二区| 久久久久久久久伊人| 精品福利av导航| 亚洲欧洲美洲综合色网| 成人免费在线观看入口| 国产精品免费久久| 亚洲欧美激情一区二区| 夜夜精品浪潮av一区二区三区 | 97久久精品人人做人人爽50路| 蜜臀av一区二区在线免费观看| 九一九一国产精品| 色综合久久综合中文综合网| 99精品国产热久久91蜜凸| 色婷婷综合五月| 久久这里都是精品| 亚洲综合久久久| 九九久久精品视频| 91精彩视频在线观看| 日韩欧美在线不卡| 色综合久久久网| 欧美成人aa大片| 一区av在线播放| 成人听书哪个软件好| 一本大道av伊人久久综合| 91麻豆福利精品推荐| 久久久一区二区三区| 亚洲男同性恋视频| 99re这里只有精品首页|