99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫EMATM0050 DSMP MSc in Data Science

時間:2024-04-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050)
Predicting T-Cell Receptor Specificity
T cells (T lymphocytes) are among the most important immune system cells with a vital role in adaptive immunity. T cells recognise cells in the body infected by viruses, bacteria or cells that have undergone cancer transformation. After recognising the infected or cancerous cells, T cells eliminate them from the body thereby preventing the spread of infection or cancer.
T cells recognise their targets through their T Cell Receptors (TCRs) expressed on their cell membrane. A T Cell Receptor consists of an alpha and a beta subunit. The evolutionary arms race between pathogens and the immune system has resulted in a mechanism for generation of a huge number of unique TCRs: and this is essential for a proper immune response against infections and cancer. Although TCR genes are encoded in the genome, their diversity is massively enhanced in several ways: (i) each TCR is composed of a pair of proteins (either alpha + beta chains or gamma + delta chains); (ii) rather than being encoded as a single gene, the DNA encoding the variable region of each of these chains is formed by joining 3 or 4 different stretches of DNA (gene segments) in a process is called VDJ recombination. Each alpha subunit contains a single V and J segment and each beta subunit contains a single V, a D and a J segment. Diversity is provided by the fact that the genome encodes multiple V, D and J segment; (iii) The joining of these segments involves mechanisms which insert and delete nucleotides in a pseudorandom fashion, maximising diversity in the joining region (the CDR3), the region of the TCR chain which contacts the peptide antigen. (ref 1)
T Cell Receptors (TCRs) constitute one of the most promising classes of emerging therapeutics. Whilst TCRs are amongst the most complex facets of immune biology, engineering of an optimum TCR can transform immunotherapies and personalised medicines. The TCR repertoire at any time point reflects on the person’s health and contains a memory of all past experiences. However, CRs are highly variable and their specificities aren’t easily predictable with traditional empirical methods.
In this project you will analyse TCR repertoire from the VDJdb (link) and use machine learning to predict TCRs that will bind to specific epitopes.
 
 Tasks
1. Data Download and Preprocessing
1.1 Download the zip file from GitHub and focus on the VDJdb.txt file.
1.2 Preprocess the dataset. Figure out what each column represents and keep
columns that will help you complete the project.
Predicting TCR specificity from sequence alone is the holy grail of immunotherapy. TCRs that are specific to the same target, often have very similar sequences, thereby TCR sequence – target patterns emerge in the data.
A crude approach could be to represent amino acids of the TCR or key regions of it using one-hot representation.
2. What are the limitations of this approach in downstream analysis? Could you describe a way to overcome them (Hint: Consider the CDR3 length distribution. We are looking for a high level description of the limitation and an approach that would overcome it. No algorithm development is required.)
A common method to predict specificity from a sequence is described in Vujovic et.al. (1). It creates some kind of distance or similarity score matrix of TCR sequences and uses that representation to train models that can classify TCRs based on specificity (Fig 1.).
 
  3. Estimate a distance/similarity matrix representation of the data. Calculate these metrics for the alpha and the beta chains separately, then calculate these for the combined alpha and beta chains too. (Hint: TCRDist, GLIPH or GIANA can be used for this. Alternatively, you can define your own similarity metric.)
4. Plot the TCRs in 2 dimensions and colour them based on specificity. Compare the plots for the alpha, the beta and the combined alpha-beta chains. Comment on your findings. (Hint: scikit-learn has a plethora of dimensionality reduction tools. Some examples are PCA, tSNE and UMAP.)
5. Write code to cluster TCRs. How well do TCRs cluster based on specificity? Can you explain why they do/don’t?
6. Write an algorithm that can predict antigen specificity from sequence. You can use any supervised/unsupervised algorithm to predict specificity. Comment on the performance of the model and reason why it performs good or bad. (Hint: Any reasonable modelling approach is fine. However, keep in mind that simpler models sometimes provide more insights regarding the underlying problem.)

 Bibliography/References
1. Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J (2020) 18:2166–21**. doi:10.1016/j.csbj.2020.06.041
2. Mayer-Blackwell. TCR meta-clonotypes for biomarker discovery with tcrdist3: quantification of public, HLA- 2 restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv (2020) 1:75–94.
3. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol (2020) 38:1194–1202. doi:10.1038/s41587-020-0505-4
4. Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun (2021) 12:1–11.doi:10.1038/s41467-02**25006-WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:學習英語必備的幾大教材!非常全面
  • 下一篇:代做CS 7642 Reinforcement Learning and Decision
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产一二三精品| 亚洲成人一二三| 日韩精品电影一区亚洲| 一本一道久久a久久精品综合蜜臀| 亚洲18女电影在线观看| 97久久超碰国产精品电影| 久久九九久精品国产免费直播| 亚洲欧洲日产国码二区| 国产精品亚洲专一区二区三区| 91麻豆成人久久精品二区三区| 欧美日韩精品三区| 亚洲一区在线观看免费| 欧美中文字幕久久| 亚洲成av人片一区二区| 51久久夜色精品国产麻豆| 婷婷成人激情在线网| 成人毛片在线观看| 国产精品进线69影院| 久久精品噜噜噜成人88aⅴ| 日韩免费性生活视频播放| 一片黄亚洲嫩模| 欧美精选在线播放| 日本亚洲天堂网| ww亚洲ww在线观看国产| 不卡一区二区在线| 亚洲一区二区欧美日韩 | 91久久久免费一区二区| 亚洲三级电影网站| 国产一区二区三区不卡在线观看| 欧美高清视频不卡网| 日韩av一级片| 国产欧美一区二区三区鸳鸯浴| 免费日韩伦理电影| 久久九九99视频| 久久国产精品区| 国产人成一区二区三区影院| 波多野结衣视频一区| 亚洲3atv精品一区二区三区| 久久亚洲春色中文字幕久久久| 三级欧美韩日大片在线看| 欧美成人vps| 色综合中文字幕国产| 亚洲一区二区成人在线观看| 日韩一区二区三区在线观看| 国产69精品久久777的优势| 亚洲综合另类小说| 26uuu久久综合| 国产一区啦啦啦在线观看| 国产精品久久久久久久久久免费看 | 亚洲国产日韩av| 精品国产凹凸成av人导航| 91在线观看美女| 韩国精品免费视频| 亚洲动漫第一页| 国产精品妹子av| 国产精品色呦呦| 欧美网站大全在线观看| 国产一区三区三区| 日本欧美一区二区在线观看| 欧美一区二区视频在线观看2020 | 欧美国产精品劲爆| 555夜色666亚洲国产免| 色综合网色综合| 国产一区二区三区蝌蚪| 日韩极品在线观看| 亚洲日本免费电影| 日本一区二区免费在线观看视频| 成人精品视频网站| 精品一区二区三区免费毛片爱| 欧美精品一区二区高清在线观看| 国产一区二区三区四区在线观看| 国产欧美日产一区| 欧美一级欧美三级在线观看| 欧美在线免费观看视频| 国产成人亚洲综合色影视| 日本不卡一区二区| 亚洲一二三四在线观看| 亚洲男同性视频| 欧美国产在线观看| 国产日韩欧美麻豆| 国产清纯在线一区二区www| 99久久精品国产网站| 国产精品亚洲第一| 国产精品1区二区.| 国产91丝袜在线观看| 亚洲国产成人av好男人在线观看| 精品国产免费人成电影在线观看四季| 粗大黑人巨茎大战欧美成人| 国产乱码精品一区二区三区忘忧草| 国产精品成人免费| 欧美激情一区在线| 中文一区二区完整视频在线观看| 欧美色图第一页| 欧美在线啊v一区| 欧美日韩在线免费视频| 欧美日韩亚洲国产综合| 欧美日韩在线精品一区二区三区激情| 国产成人自拍在线| 丁香天五香天堂综合| 日日噜噜夜夜狠狠视频欧美人| 国产欧美综合在线观看第十页| 欧美精品日韩综合在线| 欧美美女一区二区在线观看| 成人永久免费视频| 蜜桃视频一区二区三区| 亚洲欧洲色图综合| 亚洲视频一区在线| 一区二区三区精品在线| 午夜精品福利视频网站| 日本不卡视频在线观看| 极品少妇xxxx偷拍精品少妇| 亚洲自拍都市欧美小说| 亚洲一区视频在线| 中文字幕一区二区三区四区| 国产精品第四页| 一级精品视频在线观看宜春院| 国产午夜一区二区三区| 91精品国产综合久久久久| 91精品国产一区二区| 在线观看av不卡| 在线不卡免费欧美| 久久众筹精品私拍模特| 中文字幕中文字幕一区二区| 精品999久久久| 国产精品欧美一区二区三区| 一区二区三区欧美日韩| 七七婷婷婷婷精品国产| 国产福利一区二区三区视频在线| 精品午夜一区二区三区在线观看 | 久久综合九色综合欧美就去吻 | 亚洲人妖av一区二区| 亚洲国产精品影院| 久久99久久99精品免视看婷婷 | 色哟哟一区二区在线观看| 91视频www| 日韩小视频在线观看专区| 91麻豆精品国产91久久久久 | 欧美精品一区视频| 综合av第一页| 樱花影视一区二区| 免费的国产精品| 99久久夜色精品国产网站| 在线播放91灌醉迷j高跟美女 | 国产福利一区二区三区视频在线| 国产一区在线看| 91麻豆国产自产在线观看| 日韩女优毛片在线| 亚洲高清中文字幕| 成人av第一页| 精品国产3级a| 亚洲国产aⅴ成人精品无吗| 丁香六月综合激情| 久久日一线二线三线suv| 夜夜嗨av一区二区三区网页| 国产精品一区二区不卡| 欧美高清一级片在线| 亚洲欧美一区二区三区久本道91 | 91麻豆精品国产| 日韩理论片一区二区| 国产成人午夜99999| 欧美一二区视频| 亚洲超碰97人人做人人爱| 久久不见久久见免费视频1| 国产精品资源网| 欧美欧美欧美欧美首页| 亚洲另类中文字| 不卡的av在线播放| 国产欧美一区二区精品忘忧草| 亚洲人成在线观看一区二区| 亚洲一区二区三区免费视频| 99re热这里只有精品视频| 国产亚洲人成网站| 国产精品中文欧美| 精品久久久久久久久久久久包黑料 | 91精品国产综合久久福利软件| 久久综合久色欧美综合狠狠| 蜜臀av性久久久久蜜臀aⅴ流畅| 国产欧美一区二区在线观看| 《视频一区视频二区| 国产精品1区2区3区| 久久久亚洲精华液精华液精华液| 最新国产精品久久精品| 成人性色生活片| 国产亚洲欧美日韩俺去了| 狠狠色狠狠色综合系列| 精品国产一区二区三区不卡| 老汉av免费一区二区三区| 日韩免费电影网站| 青青草精品视频| 色激情天天射综合网| 亚洲日本电影在线| 色久综合一二码| 亚洲成av人**亚洲成av**| 丁香六月综合激情| 日韩理论片在线| 欧美色大人视频| 美女视频网站黄色亚洲| 久久久久青草大香线综合精品| 偷窥少妇高潮呻吟av久久免费 | 婷婷丁香激情综合|