合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CS 6347代做、MATLAB程序設計代寫

        時間:2024-04-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Problem Set 4
        CS 63**
        Due: 4/25/2024 by 11:59pm
        Note: all answers should be accompanied by explanations for full credit. Late homeworks
        cannot be accepted. All submitted code MUST compile/run.
        Problem 1: Expectation Maximization for Colorings (40 pts)
        For this problem, we will use the same factorization as we have in past assignments. As on the
        previous assignment, the weights will now be considered parameters of the model that need to be
        learned from samples.
        Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
        of the observed variables in V \ L, what is the log-likelihood as a function of the weights? Perform
        MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
        as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
        binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
        n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
        th sample
        (you should discard any inputs related to the latent variables). The output should be the vector of
        weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
        you should use belief propagation to approximate the counting problem in the E-step.
        function w = colorem(A, L, samples)
        Problem 2: EM for Bayesian Networks (60pts)
        For this problem, you will use the house-votes-84.data data set provided with this problem set.
        Each row of the provided data file corresponds to a single observation of a voting record for a
        congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
        different legislation with question marks denoting missing data.
        1. Using the first three features and the first 300 data observations only, fit a Bayesian network
        to this data using the EM algorithm for each of the eight possible complete DAGs over three
        variables.
        2. Do different runs of the EM algorithm produce different models?
        3. Evaluate your eight models, on the data that was not used for training, for the task of
        predicting party affiliation given the values of the other two features. Is the prediction highly

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp













         

        掃一掃在手機打開當前頁
      1. 上一篇:COMP1047代做、代寫Java/Python程序語言
      2. 下一篇:代寫ECS 116、代做SQL設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 日本一区二区在线不卡| 日本一区二区三区精品中文字幕| 亚洲av乱码一区二区三区| 高清一区二区在线观看| 国产在线精品一区二区在线看| 日本精品视频一区二区三区| 国产精品一区二区久久乐下载 | 夜色阁亚洲一区二区三区| 国产在线一区观看| 一本岛一区在线观看不卡| 精品国产AⅤ一区二区三区4区| 久久99精品免费一区二区| 久久免费国产精品一区二区| 日本在线观看一区二区三区| 无码人妻精品一区二区三区99仓本| 国产亚洲自拍一区| 亚洲日本精品一区二区| 成人免费观看一区二区| 国内精品视频一区二区三区| 视频在线观看一区二区三区| 中文字幕Av一区乱码| 日本一区二区在线播放| 亚洲香蕉久久一区二区三区四区| 国产成人久久一区二区不卡三区 | 国产一区二区四区在线观看| 亚拍精品一区二区三区| 亚洲av午夜精品一区二区三区| 中文字幕亚洲综合精品一区| 日本一区二区三区中文字幕| 精品人妻中文av一区二区三区| 一区二区福利视频| 波多野结衣一区二区| 中文字幕不卡一区| 国产福利在线观看一区二区 | 风间由美在线亚洲一区| 亚洲一区二区成人| 精品人体无码一区二区三区| 在线观看精品视频一区二区三区| 无码人妻品一区二区三区精99 | 麻豆一区二区三区精品视频| 国产福利电影一区二区三区|