合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CS 6347代做、MATLAB程序設計代寫

        時間:2024-04-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Problem Set 4
        CS 63**
        Due: 4/25/2024 by 11:59pm
        Note: all answers should be accompanied by explanations for full credit. Late homeworks
        cannot be accepted. All submitted code MUST compile/run.
        Problem 1: Expectation Maximization for Colorings (40 pts)
        For this problem, we will use the same factorization as we have in past assignments. As on the
        previous assignment, the weights will now be considered parameters of the model that need to be
        learned from samples.
        Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
        of the observed variables in V \ L, what is the log-likelihood as a function of the weights? Perform
        MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
        as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
        binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
        n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
        th sample
        (you should discard any inputs related to the latent variables). The output should be the vector of
        weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
        you should use belief propagation to approximate the counting problem in the E-step.
        function w = colorem(A, L, samples)
        Problem 2: EM for Bayesian Networks (60pts)
        For this problem, you will use the house-votes-84.data data set provided with this problem set.
        Each row of the provided data file corresponds to a single observation of a voting record for a
        congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
        different legislation with question marks denoting missing data.
        1. Using the first three features and the first 300 data observations only, fit a Bayesian network
        to this data using the EM algorithm for each of the eight possible complete DAGs over three
        variables.
        2. Do different runs of the EM algorithm produce different models?
        3. Evaluate your eight models, on the data that was not used for training, for the task of
        predicting party affiliation given the values of the other two features. Is the prediction highly

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp













         

        掃一掃在手機打開當前頁
      1. 上一篇:COMP1047代做、代寫Java/Python程序語言
      2. 下一篇:代寫ECS 116、代做SQL設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产成人精品无码一区二区| 成人免费视频一区| 亚洲一区二区三区四区视频| 91精品乱码一区二区三区| 精品免费国产一区二区| 亚洲一区二区三区无码中文字幕| 一本一道波多野结衣一区| 久久成人国产精品一区二区| 国产精品熟女视频一区二区 | 四虎在线观看一区二区| 亚洲AV综合色区无码一区| 国产观看精品一区二区三区| 亚洲一区二区无码偷拍| 久久国产午夜一区二区福利| 亲子乱AV视频一区二区| 91福利国产在线观看一区二区| 男人免费视频一区二区在线观看| 无码夜色一区二区三区| 日本一区二区三区不卡视频| 精品国产一区AV天美传媒| 久久久久人妻精品一区二区三区| 无码人妻精品一区二区三区东京热| 成人乱码一区二区三区av| 变态拳头交视频一区二区| 午夜视频久久久久一区 | 亚洲一区AV无码少妇电影☆| 99国产精品欧美一区二区三区| 精品亚洲av无码一区二区柚蜜| 一区二区三区视频| 无码人妻一区二区三区av| 相泽南亚洲一区二区在线播放| 亚洲一区在线视频| 中文字幕av一区| 日韩精品一区二区三区国语自制| 韩国一区二区三区| 日韩在线视频不卡一区二区三区 | 中文字幕日韩一区二区三区不| 精品人妻少妇一区二区三区| 国产一区二区电影在线观看| 亚洲AV本道一区二区三区四区 | 亚洲国产成人久久综合一区77|