99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 412代做、代寫Python設計程序

時間:2024-05-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 412: Spring ’24
Introduction To Data Mining
Assignment 5
(Due Monday, April 29, 23:59)
• The homework is due on Monday, April 29, 2024, at 23:59. Note that this is a hard deadline. We are
using Gradescope for all homework assignments. In case you haven’t already, make sure to join this
course on Gradescope using the code shared on Canvas. Contact the TAs if you face any technical
difficulties while submitting the assignment. Please do NOT email a copy of your solution. We will
NOT accept late submissions (without a reasonable justification).
• Please use Campuswire if you have questions about the homework. Make sure to appropriately tag your
post. Also, scroll through previous posts to make sure that your query was not answered previously.
In case you are sending us an email regarding this Assignment, start the subject with “CS 412 Spring
’24 HW5:” and include all TAs and the Instructor (Jeffrey, Xinyu, Kowshika, Sayar, Ruby).
• Please write your code entirely by yourself. All programming needs to be in Python 3.
• The homework will be graded using Gradescope. You will be able to submit your code as many times
as you want.
• The grade generated by the autograder upon submission will be your final grade for this assignment.
There are no post deadline tests.
• Do NOT add any third-party libraries in your code. Built-in Python libraries are allowed.
• For submitting on Gradescope, you would need to upload a Python file named homework5.py. A
python file named homework5.py containing starter code is available on Canvas.
• You are provided two sample test cases on Canvas, you can try debugging your code with minsup
values of 2 or 3 with the given sample inputs. On Gradescope, your code will be evaluated on these
sample test cases as well as additional test cases. You will get autograder feedback for the sample test
cases but not for the other hidden test cases.
• Late submission policy: there will be a 24-hour grace period without any grade reduction, i.e., Gradescope will accept late submissions until Tuesday, April 30, 2024, at 23:59.. Unfortunately, we will
NOT accept late submissions past the grace period (without a reasonable justification).
1
Problem Description
The focus of the programming assignment is to implement a frequent itemset mining algorithm based
on Apriori method with pruning. Given a transacion database T DB and a minimum support threshold minsup, the algorithm should simulate the Aprirori method with pruning - returning all the candidate
itemsets and the frequent itemsets at each scan of the algorithm.
We will test your code on relatively small transaction databases (maximum 15 transactions of length 10).
Please make sure the runtime of your code does not exceed 10 seconds for such small databases.
You will not get any credit if your code does not work.
Input Format: The input will be a plain text file with a transaction database, with each line corresponding
to a transaction composed of a string of letters. Each letter in a transaction corresponds to an item. For
example, the transaction database Test-1.txt is as following:
ACD
BCE
ABCE
BE
Your code will take two inputs:
1. Path to a plain text file pointing to the transaction database; and
2. An integer, the minimum support.
2
Output Format: Your code will implement a function called apriori based on Apriori algorithm with pruning. It will return a 3-level nested dictionary.
Figure 1: Simulation of Test-1.txt
Figure 1 shows the simulation of the Apriori algorithm with pruning for an example. The expected
output (3-level nested dictionary to be returned from the apriori function of your code) is shown in Figure
2.
Output dictionary structure
Let’s consider the 3 levels of the dictionary as outer, middle, and inner levels. The keys of the outer
level will denote the scans (or iterations) of the algorithm. For example, in Figure 1, the algorithm terminates after 3 scans and so in the dictionary of Figure 2, we have 3 elements in the outer dictionary, where the
keys of these 3 elements are integers 1, 2, and 3 denoting the first, second and third scans of the algorithm,
respectively. The scan numbers must start from 1 and should of integer data type.
Value of each scan no.(i.e., each key in the outer layer) is a dictionary, which are the middle layer dictionaries. In Figure 1, the algorithm generates the candidate itemsets and the frequent itemsets in each scan.
So each middle dictionary will have two elements - the key c denoting the candidate itemsets and the key f
denoting the frequent itemsets. The data type of keys c and f should be string.
Value for the keys c and f will be dictionaries - denoting the candidate itemsets and the frequent itemsets
of the corresponding scan. The keys of these dictionaries will be of string data type denoting the itemsets.
The values will be of integer data type denoting the support of the associated itemset.
3
Figure 2: Expected output for Test-1.txt
4
Notes
1. Pruning: While creating the candidate itemsets at every scan, you are supposed to apply pruning.
For example, in Figure 1, at the 2nd scan, merging AC and BC can generate the candidate ABC for
the 3rd scan, but as a subset AB of ABC is absent in the frequent set F2, ABC is pruned and not
included in the candidate set C3. Similarly, the ABC is absent in the corresponding inner dictionary
of Figure 2.
2. Sorting: The alphabets in the strings of the keys of the inner dictionaries should be alphabetically
sorted. For example, BCE should not be any of BEC, CBE, CEB, ECB, EBC.
3. Filename: The submitted file should be named homework5.py, otherwise Gradescope will generate an
error.
4. Terminating: If the frequent itemsets of a scan has only one itemset, the algorithm will terminate
and no further scan will be done. For example, in Figure 1, F3 has only one itemset BCE, so the 4th
scan was not performed.
Also, if the candidate itemsets of a scan is empty, that scan will be discarded and won’t be included in
the output. For example, let’s assume for some input, the frequent itemsets F2 obtained at 2nd scan
are AC, BC. So the candidate itemsets C3 for the 3rd scan will be empty (ABC won’t be in C3 as AB
is absent in F2 and so ABC will be pruned). In this case, the output will not include the 3rd scan as
both C3 and F3 are empty.
5. Error: If you get an error from the autograder that says the code could not be executed properly and
suggests contacting the course staff, please first check carefully if your code is running into an infinite
loop. An infinite loop is the most likely cause of this error.
What you have to submit
You need to submit a Python file named homework5.py. A starter code is posted on Canvas. Implement
the code to compute the required output. You can add as many functions in your code as you need. Your
code should be implemented in Python 3 and do NOT add any third-party packages in your code; you can
use Python’s built-in packages.
Your code must include a function named apriori which takes following two inputs:
1. Transaction database (filename in the starter code): path to a plain text file with the sequence database
as shown in the example above. Each line will have a transaction. Note that there will be an empty
line at the end of the file.
2. Minimum support (minsup in the starter code): an integer indicating the minimum support for the
frequent itemset mining.
A call to the function will be like:
apriori("hw5 sample input 1.txt", 2)
Additional Guidelines
The assignment needs you to both understand algorithms for frequent itemset mining, in particular Apriori
with pruning, as well as being able to implement the algorithm in Python. Here are some guidelines to
consider for the homework:
• Please start early. It is less likely you will be able to do a satisfactory job if you start late.
• It is a good idea to make early progress on the assignment, so you can assess how long it will take: (a)
start working on the assignment as soon as it is posted. Within the first week, you should have a sense
of the parts that will be easier and parts that will need extra effort from you; (b) Solve an example
5
(partly) by hand as a warm-up to get comfortable with the steps that you will have to code. For the
warm-up, you can use the two sample test cases provided on Canvas named hw5 sample input 1.txt and
hw5 sample input 2.txt.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp
















 

掃一掃在手機打開當前頁
  • 上一篇:COMP1117B代做、代寫Python編程設計
  • 下一篇:COMP1721代寫、代做java編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                丁香亚洲综合激情啪啪综合| 日韩欧美一级片| 成人毛片在线观看| 大白屁股一区二区视频| 色综合久久久网| 欧美一级理论片| 亚洲色图视频网站| 国产一区二区三区免费| 777奇米四色成人影色区| 中文字幕精品综合| 精品在线免费观看| 色婷婷激情一区二区三区| 久久蜜桃香蕉精品一区二区三区| 在线一区二区观看| 国产片一区二区三区| 麻豆极品一区二区三区| 国产精品2024| 久久伊99综合婷婷久久伊| 日本91福利区| 欧美成人伊人久久综合网| 亚洲aaa精品| 欧美专区在线观看一区| 亚洲电影第三页| 欧美在线观看你懂的| 一区二区三区不卡视频| 欧美影视一区二区三区| 五月激情综合婷婷| 日韩欧美资源站| 美女国产一区二区| 欧美大肚乱孕交hd孕妇| 国产精品一区二区91| 国产欧美一区二区三区鸳鸯浴| 国产成人8x视频一区二区 | 国产午夜精品一区二区三区四区| 国产一区二区精品久久91| 日本一区二区动态图| a在线播放不卡| 三级不卡在线观看| 中文字幕精品三区| 欧美视频中文一区二区三区在线观看 | 国产成人精品在线看| 欧美一卡二卡三卡| 成人av影视在线观看| 一区二区高清视频在线观看| 久久综合九色综合97婷婷女人| 成人黄色777网| 国产一区二区三区免费播放| 视频一区中文字幕| 亚洲精品你懂的| 国产精品电影一区二区| 欧美精品一区二区三区四区| 欧美日韩情趣电影| 欧美日韩在线直播| 一本一道综合狠狠老| 成人涩涩免费视频| 国产精品69久久久久水密桃| 国产呦萝稀缺另类资源| 国内国产精品久久| 国产成人亚洲综合a∨猫咪| 韩国三级电影一区二区| 日韩综合在线视频| 亚洲国产精品精华液ab| 国产欧美精品在线观看| 亚洲国产电影在线观看| 亚洲精品成人少妇| 亚洲第一在线综合网站| 偷窥少妇高潮呻吟av久久免费| 亚洲成av人**亚洲成av**| 日韩二区三区四区| 国产999精品久久| 欧美日韩国产bt| 国产亚洲自拍一区| 亚洲一区二区三区免费视频| 日韩精品一二三| 91精品国模一区二区三区| 日韩一区二区在线观看视频| 精品久久久久久无| 久久aⅴ国产欧美74aaa| 91国偷自产一区二区使用方法| 久久综合久久综合九色| 裸体一区二区三区| 久久久噜噜噜久噜久久综合| 国产精品综合久久| 亚洲视频在线观看三级| 欧美色中文字幕| 久久精品99国产精品| 久久久午夜精品理论片中文字幕| 福利电影一区二区| 亚洲午夜电影网| 欧美激情一区三区| 欧美精品一二三区| 99久久国产综合精品色伊| 亚洲欧美日韩国产成人精品影院| 欧美色图第一页| 国产一区二区三区黄视频| 一区二区三区资源| 国产精品理论片| 久久久久综合网| 欧美三片在线视频观看| 99久久精品99国产精品| 国产盗摄一区二区| 日本一区二区电影| 国产激情视频一区二区三区欧美 | 日韩国产欧美一区二区三区| 中文在线一区二区| 国产亚洲成aⅴ人片在线观看 | 欧美mv日韩mv国产网站app| 91看片淫黄大片一级在线观看| 国产精品影视天天线| 极品少妇xxxx精品少妇偷拍| 免费在线观看成人| 激情小说欧美图片| 国产福利一区二区三区视频在线 | 国产午夜亚洲精品羞羞网站| 欧美一区二区日韩| 26uuu久久天堂性欧美| 久久久影视传媒| 国产精品天美传媒| 亚洲日本韩国一区| 日韩在线播放一区二区| 日韩制服丝袜av| 岛国av在线一区| 欧美日韩久久不卡| 久久久噜噜噜久噜久久综合| 3atv在线一区二区三区| 91精品国产综合久久久久久| 色成人在线视频| 欧美无砖专区一中文字| 精品三级在线观看| 欧美精品一区二区久久久| 久久久久久久久免费| 国产精品久久久久国产精品日日| 久久久精品人体av艺术| 亚洲色图.com| 日韩电影免费在线看| 日韩不卡在线观看日韩不卡视频| 日本不卡一二三区黄网| 青青草国产精品97视觉盛宴| 久久成人羞羞网站| 91免费在线播放| 欧美成人a视频| 国产视频亚洲色图| 亚洲一区二区在线观看视频 | 久久精品夜色噜噜亚洲aⅴ| 一区二区三区不卡视频在线观看| 极品少妇一区二区| 7777精品伊人久久久大香线蕉经典版下载| 精品国产伦一区二区三区观看方式 | 欧美性做爰猛烈叫床潮| 91福利在线导航| 欧美日精品一区视频| 日本一区二区在线不卡| 美腿丝袜亚洲一区| 日韩一区二区三区在线| 性做久久久久久| 欧美日韩国产综合一区二区| 中文字幕一区二区三区不卡在线 | 久久久亚洲国产美女国产盗摄 | 久久午夜羞羞影院免费观看| 欧美综合久久久| 欧美日韩一卡二卡三卡| 国产亚洲成av人在线观看导航| 日韩精品国产精品| 欧美色网站导航| 午夜av电影一区| 51精品视频一区二区三区| 国产精品成人网| 国产91精品精华液一区二区三区| 精品国产精品一区二区夜夜嗨| 日韩精品一二三四| 欧美精品一区二区久久久| 国产精品综合二区| 日韩精品久久理论片| 亚洲一区av在线| 亚洲小说欧美激情另类| 亚洲女人的天堂| 亚洲一级不卡视频| 偷偷要91色婷婷| 日本中文字幕一区二区视频| 午夜影院久久久| 国产一区在线观看视频| 激情成人午夜视频| 国产精品系列在线观看| 国产精品一区二区在线看| 极品销魂美女一区二区三区| 蜜臀av在线播放一区二区三区| 亚洲一卡二卡三卡四卡五卡| 亚洲成人av福利| 琪琪久久久久日韩精品| 国产91在线看| 欧美日韩视频在线观看一区二区三区| 色狠狠综合天天综合综合| 久久综合中文字幕| 亚洲精品国产a久久久久久 | 激情综合色播五月| 91成人在线免费观看| 国产精品美女www爽爽爽| 国产综合久久久久影院| 欧美哺乳videos| 蜜臀av性久久久久蜜臀aⅴ流畅|