99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STSCI 4060代做、代寫Python設計程序
STSCI 4060代做、代寫Python設計程序

時間:2024-05-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STSCI **0/5045 Final Project 
(Due: 4:30 PM, May 16, 2024) 
Important: Read and follow this whole document carefully! 
How to submit: submit your project report to the Canvas course website with a single zip file, 
which combines all your files. 
General instructions: 
• Do your own work. Any cheating behavior (for example, submitting code similar to 
that of other student(s), copying code from an Internet source, etc.) may result in a 
serious consequence (e.g., getting zero points, failing the class, …). If you have a 
question about the project, you should directly email your instructor. 
• Start the project early. Programming is time consuming; you will need significant 
amount of time and patience to code some portions of the project. Do not expect to 
finish it on the due day. 
• Test your code (especially the .cgi files) separately from other systems. When you have 
multiple software systems connected, it is harder to debug. 
• Add sufficient documentation to your code so that people understand your algorithm 
and what your code does. This is a requirement of this project. 
• Do not edit the raw data file in any way. Your results will be compared to the standard 
solutions. 
• Make sure that you have included all the components in your submission (see the 
details at the end of this document on pages 3 and 4). Your grader will run your 
programs on his/her computer; if something is missing your programs will not run. 
 
In this project you will have an opportunity to integrate Python programming, Oracle database, 
database-driven dynamic web pages, and Python data analysis modules with Jupyter (IPython) 
notebook using the data that are processed with the above integration. You are given a raw 
data file, honeybee_gene_sequences.txt, which was downloaded from the NCBI web site. We 
dealt with the protein data in the class; however, genes are different kinds of biomolecules. 
Unlike proteins that are composed of 20 amino acids, genes are only formed with four building 
elements: adenine (A), cytosine (C), guanine (G) and thymine (T). They are called nucleotides, a 
sequence of which forms a gene, which then determines the sequence of a protein. Thus, the 
compositions of the nucleotides and their relative frequencies, especially the combined relative 
frequency of C and G (i.e., the sum of the percentages of C and G in a gene sequence), have 
important biological (or medical) meanings. For this project, you will do the following: 
 
 1. Design a web page (using KompoZer or another similar program) to allow a user to enter 
a file name (here honeybee_gene_sequences.txt) and the full path to the location where 
the file is stored so that the user can upload the data file by clicking the Submit button 
on the web page. 
2. Write a specific .cgi file with Python to accept the user input from the web page, process 
the data and store the processed data in an Oracle database table, which is also created 
 
within the .cgi file using the Python-Oracle integration approach. In this .cgi file, you 
need to at least include the following functions: 
 
 A. The main() function to receive the user input from the web page. 
B. The processInput() function to do the following: 
a) Read in the contents of the data file. 
b) In order to extract the right nucleotide (or gene) sequences for all 
possible cases (you can see that most times the nucleotide sequences 
start right after the substring, mRNA, but not always), you are required to 
insert the substring, _**gene_seq_starts_here**_, right before the 
nucleotide sequences of every bee gene (or entry) through Python 
programming when you read in (or process) the raw data line by line. In 
this way, you will use the _**gene_seq_starts_here**_ substring as the 
starting point to extract the nucleotide sequences later. Note: There are 
different ways to extract the genes from the raw data. For the 
requirement specified above, you should just treat it as a programming 
requirement of this project. 
c) Extract the gi number and nucleotide sequence of each gene (or entry). 
d) Make sure that your Python program correctly reads in the gene (or 
nucleotide) sequence of the last entry in the raw data file. 
e) Calculate the relative frequencies of each nucleotide in every gene. 
f) Calculate the combined relative frequency of the nucleotides G and C, 
freq_GC, which is obtained by adding the relative frequencies of G and C. 
g) Connect Python to the Oracle database system. 
h) Create an Oracle table called beeGenes to store gi numbers, nucleotide 
sequences, the relative frequencies of the four nucleotides and the 
combined relative frequencies of the nucleotides G and C, freq_GC. So, 
your beeGenes table has seven columns. 
i) When you write the data to the database table, you are required to use 
the Oracle bind variable approach and the batch writing method by 
setting the bindarraysize to a certain number (refer to the lecture slides if 
needed). 
j) In order not to truncate any gene sequence, you need to find an 
appropriate number for the sequence input size. Thus, you are required 
to write a separate Python program (which should also be submitted for 
grading) to determine the maximum number of nucleotides of all the 
genes in the data file. 
C. fileToStr() to return a string containing the contents of the named html file. 
D. makePage() to make the final formatted string (or webpage) for displaying on a 
web page. 
3. Design a template web page to acknowledge that the uploading process was successful 
and that the data were processed and stored in the database as planned. There is a 
button on which a user can click if the user wants to see some results, retrieved from 
the Oracle database table you just created. 
4. Code another .cgi file with Python to retrieve data from the database table (beeGenes). 
The functions you need are similar to those in the previous .cgi file, but in the 
processInput() function, you are required to use a Python dictionary and the format 
 
string mechanism when you extract data from beeGenes. In this function, you will run 
queries against the beeGenes table to find the gi numbers of those bee genes that have 
the highest relative frequencies of nucleotide A, C, G, or T so that you can display these 
on the final web page when the user clicks the “Click to See Some Result” button on the 
confirmation page of data submission. Note that you may have a situate when multiple 
genes meet the same condition. Your code should take care of this kind of situation 
automatically. When that happens, you must list all the gi numbers in the same cell of 
your webpage table, with one gi number per line. 
5. Design another template web page to display the results gathered from the database. 
Inserting a hyperlink of the nucleotides to another web page is optional. 
6. You use the local server to run all the web services in this project, using port number 
8081. 
7. Write a Python program to run a query against the Oracle table beeGenes to show that 
you earlier successfully extracted the gene sequence of the last entry of the raw data 
file. To do so, you run a query for the gene sequence by providing the related gi number, 
which is 1****7436. Include both your Python code and the query result in your report. 
8. Connect Python to the Oracle database and conduct a K-Means cluster analysis in a 
Jupyter notebook. You should only use three columns in the beeGenes table: freq_A 
(relative frequency of the nucleotide A), freq_T (relative frequency of the nucleotide T) 
and freq_GC for this analysis due to some biological reasons. 
 
In your Jupyter notebook, you should use three cells: the 1st
 cell is for importing all 
the necessary Python modules for this analysis; the 2nd cell is to connect Python to 
your Oracle database and create a numpy array containing the three columns of 
data that are read from the beeGenes table in your Oracle database; and the 3rd cell 
is for carrying out the K-Means analysis and plotting a 3D scatter plot using the three 
columns of data based on the clusters identified by the K-Means analysis. 
 
The K-Means settings are: n_cluster=7, init='random', n_init=10, max_iter=500, 
tol=1e-4, and random_state=0. Then, you create a scatter plots with a total figure 
size of 14X14. Use the same type of marker ('o') for all the clusters, set s to 20, set 
labels to "Cluster 1" to "Cluster 7" for the cluster values of 0 to 6 that are found by 
the K-Means algorism, respectively. Set the colors as follows: red for Cluster 1, blue 
for Cluster 2, aqua for Cluster 3, black for Cluster 4, purple for Cluster 5, magenta for 
Cluster 6, and green for Cluster 7. 
 
Mark the centroid of each cluster with a star: set s to 100, color to red and label to 
Centroids. Give the title "K-Means" to the plot. The legends should be displayed in 
the upper right corner of the plot. 
 
After your code works correctly, run all the cells in your Jupyter notebook at once. 
Submit the notebook file (.ipynb) and an HTML file of the same notebook (.html). 
 
Your report should at least contain the following items: all your code, outputs and screenshots, 
which must be combined into a single PDF file, arranged in the order they appear in the project. 
You must mark all your items clearly. Moreover, your Python and html program files must be 
 
submitted as separate files, which must be kept in the same folder (no subfolders) so that your 
grader can run your programs easily. The following is a detailed list of the files/items to submit. 
 
• All Python program files (with the .py extension), including the program to find the 
maximum number of nucleotides in a gene sequence and the program to query the 
database to confirm that you successfully extracted the gene sequence of the last 
entry of the raw data file. 
• All .cgi files, which are technically Python files but contain the .cgi extension. 
• All .html files, including the template and non-template .html files. 
• The design window of your input web page. 
• The design windows of your two template web pages. 
• A screenshot of your input web page with the input value entered. 
• A screenshot of your confirmation web page that displays that you have successfully 
submitted the data, etc. 
• A screenshot of your final web page that displays the results of database query 
similar to the following screenshot (but it is only an example here, and the actual 
results were erased). 
 
• A screenshot of the local CGI server log. 
• The result of Oracle table query for the gene sequence of the last entry, which 
should be a Python shell screenshot (you may need more than one screen to display 
the complete sequence). 
• Your Jupyter notebook file (.ipynb). 
• The Jupyter notebook HTML file (.html). 
• The localCGIServer.py file. 
• The raw data file, honeybee_gene_sequences.txt. 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

















 

掃一掃在手機打開當前頁
  • 上一篇:IERG2080代做、代寫C/C++程序語言
  • 下一篇:菲律賓開車需要駕照嗎(開車注意事項)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产成人午夜精品5599| 国产成人久久精品77777最新版本| 成人一区二区三区在线观看| 精品国产制服丝袜高跟| 美女视频网站久久| 国产欧美一区二区三区网站| aaa国产一区| 国产91在线看| 国产精品系列在线播放| 天堂资源在线中文精品| 国产精品久久三区| 国产欧美一区二区三区在线看蜜臀 | 成人夜色视频网站在线观看| 久久精品二区亚洲w码| 亚洲成人资源网| 亚洲地区一二三色| 亚洲欧美日韩人成在线播放| 中文在线一区二区 | 日韩三级中文字幕| 欧美精品高清视频| 精品毛片乱码1区2区3区| 欧美性色黄大片手机版| 欧美少妇xxx| 精品日韩欧美在线| 国产精品蜜臀av| 亚洲精品美国一| 日韩激情av在线| 一区二区欧美国产| 亚洲综合av网| 久久av老司机精品网站导航| 国内成人免费视频| 91色.com| 精品精品国产高清一毛片一天堂| 性久久久久久久| 成人福利在线看| 欧美性大战久久久久久久蜜臀| 欧美一区二区在线看| 久久婷婷久久一区二区三区| 国产婷婷色一区二区三区| 亚洲已满18点击进入久久| 蜜臀久久久久久久| 91毛片在线观看| 欧美性大战久久久久久久蜜臀 | 狠狠色2019综合网| 99国产精品久久久久久久久久久| 欧美性xxxxxx少妇| 久久久久久久精| 蜜臂av日日欢夜夜爽一区| 99久久国产免费看| 日韩一级片在线观看| 亚洲永久精品大片| 色美美综合视频| 国产精品无遮挡| 狂野欧美性猛交blacked| 91久久精品国产91性色tv| 国产日本欧美一区二区| 五月综合激情网| 欧美优质美女网站| 一区二区三区91| 欧美亚洲另类激情小说| 亚洲精品视频在线看| 色天使色偷偷av一区二区| 亚洲视频资源在线| 99视频一区二区三区| 中文字幕一区二区三区不卡在线| 风流少妇一区二区| 国产日韩一级二级三级| 蜜臀av国产精品久久久久| 国产欧美1区2区3区| 成人开心网精品视频| 国产精品久久久久影院色老大| 国产91丝袜在线观看| 日本一区二区三区国色天香| 国产乱码一区二区三区| 国产日韩影视精品| 在线观看亚洲成人| 蜜桃久久精品一区二区| 国产日韩欧美a| 欧美日韩国产精选| 韩国欧美一区二区| 一区二区三区精品| 久久综合色一综合色88| 成人蜜臀av电影| 视频一区二区欧美| 国产精品人成在线观看免费| 97久久精品人人做人人爽50路| 视频一区视频二区在线观看| 久久久久久久久久久久久女国产乱 | 欧美成人官网二区| 久久99精品一区二区三区| 国产午夜亚洲精品理论片色戒| 91在线观看免费视频| 欧美96一区二区免费视频| 国产欧美日韩中文久久| 正在播放亚洲一区| 制服丝袜激情欧洲亚洲| 国产精品乱码人人做人人爱 | 国产精品人人做人人爽人人添| 91尤物视频在线观看| 韩国精品一区二区| 日韩高清在线不卡| 亚洲免费电影在线| 国产精品色哟哟| 久久蜜桃av一区精品变态类天堂| 色偷偷一区二区三区| 国产美女精品在线| 精品在线免费视频| 国产经典欧美精品| 久久精品免费观看| 国产乱子伦视频一区二区三区| 六月丁香婷婷久久| 亚洲一区二区欧美日韩| 亚洲欧洲精品一区二区精品久久久 | **网站欧美大片在线观看| 日韩久久久精品| 欧美日韩成人综合在线一区二区| 欧美视频一区二区三区在线观看| 色香蕉成人二区免费| 色婷婷精品大在线视频| 另类小说欧美激情| 黄一区二区三区| 国产精品99久久久久久久vr| 国内精品第一页| 粉嫩久久99精品久久久久久夜| 国产精品乡下勾搭老头1| 91在线视频播放地址| 欧美日高清视频| 精品国产一区二区三区四区四| 欧美xxx久久| 最新国产の精品合集bt伙计| 亚洲一区免费视频| 国产精品18久久久久久vr| 欧美羞羞免费网站| 久久嫩草精品久久久久| 中文字幕日韩av资源站| 日韩av一二三| 成人动漫一区二区三区| 欧美日韩黄视频| 成人免费在线观看入口| 久久99精品国产麻豆不卡| 99精品一区二区三区| 欧美成人vr18sexvr| 亚洲v日本v欧美v久久精品| 99国产欧美另类久久久精品| 日韩一级精品视频在线观看| 亚洲黄色小视频| 91免费国产视频网站| 国产精品美女久久福利网站| 人人狠狠综合久久亚洲| 欧美肥妇bbw| 午夜久久久久久| 国产精品视频看| 国产福利不卡视频| 日韩精品在线网站| 喷白浆一区二区| 婷婷激情综合网| 视频一区视频二区中文字幕| 成人自拍视频在线观看| 久久久国产精品不卡| 丁香婷婷综合五月| 成人免费一区二区三区在线观看| 欧美va亚洲va香蕉在线| 蜜桃av一区二区三区电影| 欧美一区二区三区小说| 麻豆精品新av中文字幕| 精品电影一区二区| 国产成人精品三级| 亚洲日本电影在线| 久久精品国产亚洲a| xnxx国产精品| 一本大道av伊人久久综合| 丝袜亚洲另类欧美综合| 日韩精品一区二| 波多野结衣亚洲一区| 亚洲午夜免费福利视频| 欧美成人精品福利| 成人av午夜影院| 久久精品久久精品| 亚洲三级在线看| 欧美tickling网站挠脚心| 成人激情黄色小说| 日韩av高清在线观看| 国产情人综合久久777777| 在线一区二区三区四区| 精品一区二区在线免费观看| 亚洲一区二区在线播放相泽| 中文在线一区二区| 日韩欧美在线一区二区三区| 色综合久久中文综合久久牛| 国产综合久久久久久鬼色| 久久色在线观看| 91麻豆精品国产91久久久久| 成人午夜在线播放| 国产真实乱偷精品视频免| 午夜精品爽啪视频| 亚洲自拍偷拍网站| 亚洲图片欧美综合| 亚洲国产美女搞黄色| 一区二区三区在线视频播放| 国产欧美精品区一区二区三区 |