99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
For instance, CW-0**2023141520000-Tom.zip
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




















 

掃一掃在手機打開當前頁
  • 上一篇:香港到越南簽證多久能下來(香港辦理越南簽證流程)
  • 下一篇:CSSE2010 代做、代寫 c/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                94色蜜桃网一区二区三区| 国产一区二区不卡在线| 国产精一区二区三区| 久久久久国产精品麻豆| 国产专区欧美精品| 国产精品家庭影院| 91国产成人在线| 五月激情六月综合| 2023国产精华国产精品| 91免费版pro下载短视频| 日韩不卡在线观看日韩不卡视频| 欧美成人精品福利| 粉嫩一区二区三区在线看| 夜色激情一区二区| 欧美白人最猛性xxxxx69交| 99精品国产热久久91蜜凸| 水野朝阳av一区二区三区| 日本一区二区三区dvd视频在线| 欧美在线免费观看视频| 国产伦精品一区二区三区视频青涩 | 狠狠色丁香九九婷婷综合五月| 欧美国产日韩亚洲一区| 欧美人妖巨大在线| 丁香婷婷综合色啪| 极品少妇xxxx偷拍精品少妇| 亚洲在线视频网站| 国产精品色婷婷久久58| 精品动漫一区二区三区在线观看| 欧美撒尿777hd撒尿| 99国产精品久久久久久久久久 | 欧美经典一区二区| 欧美精选午夜久久久乱码6080| 成人一级视频在线观看| 麻豆高清免费国产一区| 香港成人在线视频| 亚洲伊人伊色伊影伊综合网| 国产精品丝袜在线| 国产夜色精品一区二区av| 欧美军同video69gay| 91黄视频在线观看| 成人免费视频网站在线观看| 成人一级黄色片| 国产精品18久久久久久vr| 美女被吸乳得到大胸91| 热久久一区二区| 麻豆久久久久久久| 久久er精品视频| 毛片av中文字幕一区二区| 日本欧美一区二区三区| 午夜精品视频一区| 日韩二区在线观看| 日本中文字幕一区| 免费观看日韩av| 老司机免费视频一区二区三区| 日韩精品一二三| 久久99精品国产91久久来源| 国产综合成人久久大片91| 精品无人码麻豆乱码1区2区| 国产不卡在线视频| 成人性生交大片免费看在线播放| 不卡的电影网站| 日本丶国产丶欧美色综合| 欧美在线一区二区| 91精品在线免费观看| 精品美女一区二区| 中文字幕视频一区| 亚洲午夜久久久久久久久电影院| 亚洲午夜在线视频| 国产美女在线观看一区| 99精品视频一区二区| 欧美午夜在线一二页| 欧美一区二区三区白人| 久久精品一区二区三区不卡牛牛| 中文字幕日本乱码精品影院| 午夜久久电影网| 玖玖九九国产精品| 99久久国产综合精品色伊| 欧美日韩精品一区二区三区 | 亚洲另类春色校园小说| 日韩欧美在线综合网| 在线精品视频一区二区| 国产成人在线色| 7777女厕盗摄久久久| 欧日韩精品视频| 91久久精品一区二区三区| zzijzzij亚洲日本少妇熟睡| 91性感美女视频| eeuss鲁片一区二区三区| 欧美日韩色一区| 国产夜色精品一区二区av| 亚洲综合图片区| 风流少妇一区二区| 欧美麻豆精品久久久久久| 中文字幕精品—区二区四季| 亚洲与欧洲av电影| 成人在线综合网| 日韩精品中文字幕一区二区三区 | 亚洲综合一区二区精品导航| 久久精品国产免费| 91日韩精品一区| 91精品国产综合久久久久久| 中文字幕不卡在线| 蜜桃久久精品一区二区| 欧美性极品少妇| 国产日韩欧美电影| 久久疯狂做爰流白浆xx| 欧美日韩国产三级| 《视频一区视频二区| 国产毛片一区二区| 日韩美女主播在线视频一区二区三区 | 欧美日韩在线一区二区| 国产欧美va欧美不卡在线| 青青草一区二区三区| 色爱区综合激月婷婷| 国产精品成人免费在线| 国产精品亚洲综合一区在线观看| 日韩免费视频线观看| 视频一区免费在线观看| 91久久精品日日躁夜夜躁欧美| 国产精品每日更新| 国产成人av福利| 久久久久久久av麻豆果冻| 免费成人深夜小野草| 日韩一区二区三区视频在线| 日本网站在线观看一区二区三区 | 丝袜亚洲另类丝袜在线| 色婷婷亚洲综合| 亚洲精品老司机| 欧美在线免费视屏| 天天影视网天天综合色在线播放| 欧美天天综合网| 天堂一区二区在线| 91精品国产综合久久婷婷香蕉| 天天色 色综合| 欧美一级欧美一级在线播放| 奇米影视7777精品一区二区| 日韩免费视频一区二区| 国产成人av电影在线| 国产欧美日产一区| 成人黄页毛片网站| 一区二区三区 在线观看视频| 99久久久免费精品国产一区二区| 专区另类欧美日韩| 欧美日韩国产另类一区| 久草中文综合在线| 亚洲国产电影在线观看| 色综合久久天天综合网| 亚洲国产一区二区三区| 欧美不卡一二三| 91色在线porny| 午夜天堂影视香蕉久久| 精品久久久久av影院| 国产成人精品午夜视频免费| 一区二区三区四区国产精品| 欧美日韩国产高清一区二区| 蜜臂av日日欢夜夜爽一区| 欧美精品一区二| 日本高清不卡一区| 国产美女精品人人做人人爽| 亚洲精品一二三| 日韩一区二区三免费高清| 99久久精品国产一区二区三区| 五月综合激情日本mⅴ| 国产午夜精品一区二区| 91精品在线观看入口| www.欧美日韩| 五月激情综合婷婷| 中文字幕中文字幕在线一区 | 成人免费精品视频| 日韩av网站免费在线| 国产精品久久久久久久久免费桃花 | 成人avav在线| 亚洲一二三级电影| 国产精品区一区二区三区| 欧美一区二区三区在线看 | 成人av集中营| 美国毛片一区二区| 天堂资源在线中文精品| 亚洲激情图片一区| 国产精品少妇自拍| 久久久久久一级片| 欧美变态口味重另类| 91精品国产手机| 欧美日韩亚洲国产综合| 色先锋久久av资源部| 不卡一卡二卡三乱码免费网站| 激情av综合网| 久久99精品久久久| 日韩电影在线一区| 午夜精品一区二区三区三上悠亚| 一区二区三区在线免费| 一区二区在线观看免费视频播放 | av男人天堂一区| 成人午夜视频免费看| 精品一区二区在线观看| 日韩激情av在线| 中文字幕中文字幕一区| 国产精品久久国产精麻豆99网站| 国产欧美日韩视频在线观看| 中文字幕的久久|