99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲激情偷拍| 欧美色精品天天在线观看视频 | 久久久蜜桃精品| 国产精品区一区二区三区| 亚洲精品综合久久中文字幕| 久久久久国产一区二区| 国产精品一区二区在线观看| 一区二区三区欧美在线观看| 欧美激情精品久久久久| 在线观看亚洲专区| 久久久久久亚洲综合影院红桃| 国产美女在线精品免费观看| 亚洲视频1区| 欧美先锋影音| 亚洲一区欧美| 国产精品丝袜91| 欧美亚洲免费| 国产综合色精品一区二区三区| 午夜亚洲影视| 狠狠色狠狠色综合| 久久综合伊人| 最新国产成人av网站网址麻豆| 美女精品在线观看| 亚洲精品一区二区三区av| 欧美精品久久久久久久| 亚洲精品乱码视频| 欧美视频中文字幕在线| 亚洲一区二区三区久久| 国产欧美大片| 久久综合狠狠综合久久综青草 | 欧美日韩视频| 亚洲在线视频观看| 国产一区二区三区高清播放| 久久久欧美精品sm网站| 亚洲国产综合在线看不卡| 欧美激情综合网| 亚洲图片在区色| 国产亚洲一区二区三区在线播放| 久久狠狠亚洲综合| 亚洲人成精品久久久久| 国产精品高潮粉嫩av| 欧美一区二区三区视频免费| 伊甸园精品99久久久久久| 欧美激情免费观看| 亚洲欧美伊人| 亚洲成人自拍视频| 欧美日韩在线观看一区二区三区| 午夜视频一区二区| 亚洲激情自拍| 国产欧美精品| 欧美大片免费看| 亚洲欧美日韩电影| 在线观看一区二区精品视频| 欧美日韩免费一区二区三区视频| 欧美一级艳片视频免费观看| 最新国产乱人伦偷精品免费网站| 欧美午夜宅男影院| 男女精品网站| 久久成年人视频| 一区二区三区精品国产| 精品动漫3d一区二区三区| 欧美日韩国产综合视频在线观看| 欧美一区二区三区免费视频| 日韩午夜电影av| 在线看欧美视频| 国产日韩精品在线| 欧美视频在线视频| 欧美丰满高潮xxxx喷水动漫| 欧美一区1区三区3区公司| 夜夜嗨网站十八久久| 在线观看欧美成人| 国产亚洲精品v| 国产精品伦一区| 欧美区一区二| 狂野欧美激情性xxxx欧美| 欧美亚洲一级片| 在线性视频日韩欧美| 亚洲人成人77777线观看| 精品二区视频| 国产性天天综合网| 国产欧美日韩专区发布| 国产精品黄视频| 欧美三日本三级三级在线播放| 欧美福利电影网| 欧美~级网站不卡| 免费不卡在线视频| 久久免费视频这里只有精品| 欧美一区二区三区婷婷月色| 亚洲欧美成aⅴ人在线观看| 亚洲开发第一视频在线播放| 亚洲国产另类久久久精品极度| 狠狠色狠狠色综合日日小说| 国产在线欧美| 黑人一区二区三区四区五区| 国产综合欧美在线看| 欧美成人精品一区| 一区二区三区国产在线| 国产精品av免费在线观看 | 欧美日韩伦理在线免费| 伊甸园精品99久久久久久| 欧美一区网站| 日韩亚洲欧美一区| 国产精品高清在线观看| 亚洲欧美国产不卡| 亚洲激情一区二区| 久久精品国产欧美亚洲人人爽| 亚洲国产高清aⅴ视频| 激情久久久久久久久久久久久久久久 | 国产综合色在线| 国产一区二区三区免费不卡| 国产揄拍国内精品对白 | 黑丝一区二区| 国产欧美日韩精品专区| 国产欧美精品| 在线观看欧美视频| 亚洲电影欧美电影有声小说| 亚洲国产精品视频| a4yy欧美一区二区三区| 亚洲欧美春色| 噜噜噜躁狠狠躁狠狠精品视频| 美女露胸一区二区三区| 欧美理论电影在线观看| 国产精品日韩在线观看| 狠狠久久五月精品中文字幕| 91久久精品一区二区别| 亚洲综合二区| 老司机亚洲精品| 欧美三级精品| 国内精品久久久久久久影视麻豆 | 在线国产精品一区| 99在线精品视频在线观看| 午夜国产精品视频免费体验区| 久久久久国产精品一区二区| 欧美日韩一区国产| 国产一区二区你懂的| 99国产精品久久久久久久成人热 | 亚洲精品小视频在线观看| 亚洲欧美日本精品| 美女福利精品视频| 国产精品女人网站| 亚洲日本成人网| 久久精品国产第一区二区三区最新章节 | 亚洲欧洲在线视频| 亚洲欧美日韩在线高清直播| 免费人成网站在线观看欧美高清| 国产精品久久久久久久久久直播 | 亚洲大胆美女视频| 亚洲免费在线精品一区| 欧美丰满高潮xxxx喷水动漫| 国产欧美一区二区精品仙草咪 | 伊人久久成人| 亚洲字幕一区二区| 欧美高清在线一区二区| 国产一区二区三区av电影| 一区二区不卡在线视频 午夜欧美不卡在 | 久久精品免费观看| 欧美18av| 国产欧美视频在线观看| 亚洲国产综合91精品麻豆| 久久久久久伊人| 亚洲欧美制服另类日韩| 午夜一级在线看亚洲| 久久午夜视频| 欧美国产日韩一区二区| 亚洲欧美卡通另类91av | 国产亚洲欧美aaaa| 欧美日韩精品二区| 噜噜爱69成人精品| 亚洲欧洲在线播放| 欧美乱大交xxxxx| 99视频精品免费观看| 亚洲欧美中文另类| 国产精品成人在线| 亚洲精品影视| 新67194成人永久网站| 国产精品久久久久久久电影| 亚洲国产精品热久久| 欧美精品成人一区二区在线观看 | 国产亚洲一区精品| 亚洲午夜久久久久久久久电影院| 欧美激情片在线观看| 亚洲韩日在线| 久久久蜜桃精品| 亚洲国产精品国自产拍av秋霞| 久久久久久网| 亚洲精品午夜| 国产精品免费福利| 久久久久久精| 激情国产一区二区| 欧美精品v日韩精品v国产精品| 99精品欧美一区| 欧美日韩国产欧| 一区二区免费在线观看| 国产精品视频yy9299一区| 亚洲欧美国产va在线影院| 国产精品一区二区三区乱码 | 国产欧美亚洲视频| 午夜精品久久久久久久99水蜜桃 | 国产欧美日韩在线视频| 亚洲一区久久久|