99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                九九热在线视频观看这里只有精品| 久久精品av麻豆的观看方式| 欧美激情一区二区| 中文字幕一区不卡| 麻豆精品视频在线观看免费| av在线这里只有精品| 欧美日韩aaa| 国产欧美视频一区二区| 三级欧美韩日大片在线看| 成+人+亚洲+综合天堂| 成人av在线网站| 欧美视频一区在线观看| 精品三级在线看| 亚洲国产视频一区二区| 韩国女主播一区| 555www色欧美视频| 一二三四区精品视频| 99免费精品视频| 欧美国产日韩a欧美在线观看| 蜜臀av在线播放一区二区三区| 欧美色图12p| 亚洲一区二区五区| 国产成人在线网站| 亚洲电影在线播放| 亚洲一区二区三区在线| 一卡二卡欧美日韩| 亚洲天堂网中文字| 国内精品久久久久影院色| 欧美日韩在线播放三区| 91视频你懂的| 精品国产免费人成在线观看| 91香蕉视频黄| 国产女同互慰高潮91漫画| 美日韩一级片在线观看| 欧美日韩精品专区| 亚洲成人精品在线观看| 99国产精品久久| 综合久久一区二区三区| 国产精品自拍av| 26uuu国产在线精品一区二区| 日韩电影在线观看电影| 91精品国产综合久久国产大片| 亚洲高清免费观看 | 久久综合久久鬼色中文字| 亚洲午夜在线观看视频在线| 91精品久久久久久久久99蜜臂| 99视频一区二区三区| 一区二区三区四区高清精品免费观看| 欧美一卡二卡三卡| 色狠狠色噜噜噜综合网| 蜜桃av噜噜一区二区三区小说| 国产精品网曝门| 欧美福利视频一区| 在线观看视频一区| 色94色欧美sute亚洲13| 亚洲一区二区三区美女| 中文字幕中文字幕一区二区| 国产黄色成人av| 欧美日韩激情在线| 亚洲影院久久精品| 国产精品日日摸夜夜摸av| 欧美日韩不卡一区| 国产精品麻豆欧美日韩ww| 成人亚洲精品久久久久软件| 国产美女在线精品| 国产精品网站一区| 日本福利一区二区| 日本vs亚洲vs韩国一区三区| 精品国产一二三区| 91在线视频在线| 日本不卡一区二区三区 | 国产精品久久综合| 91在线视频在线| 蜜臀久久久99精品久久久久久| 久久麻豆一区二区| 色婷婷国产精品综合在线观看| 亚洲成人动漫一区| 欧美大胆一级视频| 色综合天天视频在线观看| 日韩电影在线免费看| 中文字幕精品一区二区精品绿巨人 | 懂色av一区二区三区免费看| 亚洲精品中文字幕乱码三区| 日韩网站在线看片你懂的| 高清国产午夜精品久久久久久| 亚洲不卡在线观看| 久久久久国产成人精品亚洲午夜| 日本乱码高清不卡字幕| 国内精品写真在线观看| 亚洲一区二区三区四区在线| 26uuu另类欧美亚洲曰本| 91丨porny丨户外露出| 久久99国产精品久久| 一区二区三区蜜桃| 国产午夜精品福利| 日韩欧美123| 色婷婷综合久色| 国产精品538一区二区在线| 亚洲高清久久久| 中文字幕一区二区三区在线观看| 3751色影院一区二区三区| 成a人片亚洲日本久久| 国产一区二区三区香蕉| 午夜精品久久久久久久| 国产精品久久久久久久久搜平片| 3d成人h动漫网站入口| 在线亚洲一区二区| 99久久精品情趣| 国产传媒日韩欧美成人| 免费精品视频在线| 丝袜美腿亚洲色图| 亚洲一区在线电影| 18欧美亚洲精品| 国产精品丝袜一区| 中文字幕精品在线不卡| 国产欧美日韩在线看| www国产成人| 精品国产91乱码一区二区三区| 在线成人小视频| 5月丁香婷婷综合| 欧美喷潮久久久xxxxx| 欧美性猛交xxxx乱大交退制版| 91麻豆123| 色94色欧美sute亚洲线路二| 91亚洲精品久久久蜜桃网站 | 欧美成人一区二区| 日韩欧美成人激情| xf在线a精品一区二区视频网站| 日韩女优毛片在线| 精品国产网站在线观看| 久久精品一区蜜桃臀影院| 久久久另类综合| 欧美激情一区在线观看| 国产精品女同一区二区三区| 国产精品久久久久久久久搜平片| 国产清纯美女被跳蛋高潮一区二区久久w | 欧美日韩1234| 在线一区二区视频| 欧美色图免费看| 91精品国产美女浴室洗澡无遮挡| 欧美一区二区在线视频| 欧美大片在线观看| 国产三级精品在线| 亚洲欧美自拍偷拍色图| 亚洲第一在线综合网站| 日本中文字幕一区| 国产精品亚洲一区二区三区妖精| 风间由美性色一区二区三区| www.在线成人| 欧美日本高清视频在线观看| 欧美电影免费观看高清完整版在线 | 亚洲欧洲无码一区二区三区| 亚洲色图制服诱惑| 亚洲第一成人在线| 韩国三级电影一区二区| 丰满少妇久久久久久久| 在线国产亚洲欧美| 日韩欧美国产精品一区| 国产女人aaa级久久久级| 亚洲综合在线电影| 精品一区二区三区久久久| 成人av在线播放网址| 精品视频一区二区三区免费| 精品国偷自产国产一区| 中文字幕一区二区三区在线不卡 | 蜜桃传媒麻豆第一区在线观看| 国产美女一区二区| 在线欧美日韩精品| 2023国产精华国产精品| 亚洲靠逼com| 精品一区二区在线看| 99re成人精品视频| 日韩免费看网站| 一区二区三区在线不卡| 久88久久88久久久| 日本久久电影网| 国产亚洲一区二区在线观看| 午夜视频久久久久久| 成人手机在线视频| 日韩欧美在线123| 亚洲国产cao| 波多野结衣亚洲| 精品黑人一区二区三区久久| 亚洲精品国产视频| 高清不卡一区二区在线| 欧美大黄免费观看| 午夜av一区二区三区| caoporn国产精品| 久久久久久久久一| 免费观看一级欧美片| 波多野结衣中文一区| 久久久噜噜噜久久中文字幕色伊伊| 亚洲国产欧美在线人成| 99国产麻豆精品| 国产精品欧美经典| 国产a视频精品免费观看| 91精品中文字幕一区二区三区| 亚洲精品视频免费观看| 99久久久久久| 国产精品卡一卡二卡三|