合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做 COMPSCI 753、代寫 Python,c/c++編程設(shè)計(jì)

        時(shí)間:2024-08-12  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Algorithms for Massive Data
        Assignment 1 / Semester 2, 2024 Graph Mining
        General instructions and data
        This assignment aims at exploring the PageRank algorithm on big real-world network data. By working on this assignment, you will learn how to implement some of the PageRank algorithms that we have learned in class.
        Data: Download the web-Google web dataset ’web-Google-final.txt’ from the assignment page on Canvas1. Each line of the file represents a directed edge from a source node to a destination node. There are N = 875713 nodes. Nodes are represented by numeric IDs ranging from 0 to 875712.
        Submission
        Please submit: (1) a file (.pdf or .html) that reports the answers requested for each task, and (2) a source code file (.py or .ipynb) that contains your code and detailed comments. Submit this on the Canvas assignment page by 23:59 NZST, Sunday 11 August. The files must contain your student ID, UPI and name.
        Penalty Dates
        The assignment will not be accepted after the last penalty date unless there are special circumstances (e.g., sickness with certificate). Penalties will be calculated as follows as a percentage of the marks for the assignment.
        • 23:59 NZST, Sunday 11 August – No penalty
        • 23:59 NZST, Monday 12 August – 25% penalty • 23:59 NZST, Tuesday 13 August – 50% penalty
        1This dataset is adapted from SNAP http://snap.stanford.edu/data/web-Google.html
         
        Tasks (100 points)
        Task 1 [40 points]: Implementation of Power Iteration Algorithm.
        In this task you will implement the basic version of the Power Iteration algorithm for PageR- ank. This task involves two sub-tasks, as follows:
        (A) [25 points] Implement the power iteration algorithm in matrix form to calculate the rank vector r, without teleport, using the PageRank formulation:
        r(t+1) = M · r(t)
        The matrix M is an adjacency matrix representing nodes and edges from your downloaded dataset, with rows representing destination nodes and columns representing source nodes. This matrix is sparse2. Initialize r(0) = [1/N, . . . , 1/N]T . Let the stop criteria of your power iteration algorithm be ||r(t+1) − r(t)||1 < 0.02 (please note the stop criteria involves the L1 norm). Spider traps and dead ends are not considered in this first task.
        (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time of your power iteration algorithm; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
        Task 2 [10 points]: Understanding dead-ends.
        In this task, before extending your code to support dead-ends using teleport, you will run some analysis on your current implementation from Task 1. This second task involves two sub-tasks:
        (A) [5 points] Calculate and report the number of dead-end nodes in your matrix M.
        (B) [5 points] Calculate the leaked PageRank score in each iteration of Task 1 (B). The leaked PageRank score is the total score you lose in that iteration because of dead-ends (hint: see example on slide 2 of W1.3 lecture notes). Create a plot that shows how this leaked score behaves as iterations progress. Explain the phenomenon you observe from this visualization.
        2Consider using a sparse matrix (e.g., use scipy.sparse in Python) in your implementation, so that your algorithm should stop within a few seconds in a basic computer. If your algorithm can’t stop within several minutes, you may want to check your implementation.
         1

        Task 3 [50 points]: Implementation of Power Iteration with Teleport.
        In this task, you will extend your implementation from Task 1 using the teleport mechanism to handle both dead-ends and spider traps. This task involves three sub-tasks:
        (A) [25 points] Extend your PageRank code to handle both spider traps and dead ends using the idea of teleport. In this task, your implementation will allow to teleport randomly to any node. Code the PageRank with teleport formulation that, using the sparse matrix M, for each iteration works in three steps (slide 8 of W1.3 lecture notes):
        Step 1: Calculate the r ranks of current iteration rnew (in matrix form): rnew =βM·rold
        Step 2: Calculate the constant S for teleport:
        S = 􏰀 rnew
        j j
        Step 3: Update rnew with teleport:
        rnew = rnew + (1 − S)/N
        In your implementation, use β = 0.9. Initialize r(0) = [1/N,...,1/N]T. The stop criteria should be ||rnew − rold||1 < 0.02.
        (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
        (C) [10 points] Vary the teleport probability β with numbers in the set: {1, 0.9, 0.8, 0.7, 0.6}. Report the number of iterations needed to stop for each β. Explain, in words, your findings from this experiment.




        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:MAS362 代寫、JAVA/C++編程設(shè)計(jì)代做
      2. 下一篇:MAST10006代做、Python/c++程序設(shè)計(jì)代寫
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      4. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 国产乱码伦精品一区二区三区麻豆| 精品一区精品二区制服| 国产精品一区二区AV麻豆| 色婷婷亚洲一区二区三区 | 丰满岳妇乱一区二区三区| 亚洲国产一区二区三区青草影视| 国产日韩综合一区二区性色AV| 人妻少妇精品一区二区三区| 麻豆一区二区免费播放网站| 国产亚洲欧洲Aⅴ综合一区| 无码日本电影一区二区网站| 亚洲AV本道一区二区三区四区| 精品乱子伦一区二区三区| 久久久久人妻精品一区三寸| 精品视频无码一区二区三区| 国产午夜精品一区二区三区小说| 理论亚洲区美一区二区三区| 精品国产一区二区三区久 | 色屁屁一区二区三区视频国产| 无码人妻精品一区二区蜜桃网站| 色窝窝无码一区二区三区成人网站 | 国产AⅤ精品一区二区三区久久| 成人毛片一区二区| 相泽南亚洲一区二区在线播放| 成人免费视频一区| 一区五十路在线中出| 成人精品视频一区二区三区不卡| 香蕉在线精品一区二区| 东京热人妻无码一区二区av| 亚洲一区二区三区AV无码| 久久久久人妻精品一区二区三区| 人妻AV中文字幕一区二区三区 | 亚洲AV午夜福利精品一区二区| 91一区二区在线观看精品| 国产欧美色一区二区三区| 国产一区在线观看免费| 国产内射在线激情一区| 久久久精品人妻一区二区三区蜜桃 | 无码AV天堂一区二区三区| 国产乱码精品一区二区三区四川人| 日本精品视频一区二区三区|