合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做DATA7703、代寫Python程序語言

        時間:2024-08-16  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        S2 - 2024 DATA7703 – Machine Learning for Data Scientists
        Assignment 1
        Decision Trees
        Due date: Friday Aug 16 3pm
        1. Training a Decision Tree
        - First complete Q1 using the scikit-learn (sklearn) library (40%)
        - Next complete Q1 without using any ML libraries, (ie. implement a decision tree
        algorithm from scratch) (30%)
        Write a program in Python to implement the ID3 decision tree algorithm. You should read in
        a tab delimited dataset, and output to the screen the relevant results in some readable format.
         Name your program decisiontreeassignment.py
         Basic math and file reading functions from libraries such as numpy or pandas etc. are
        allowed.
        There are two sample datasets available from the course blackboard page you can use
         tennis.txt - Predict whether or not your tennis partner will join you to play tennis
        based on weather.
         titanic2.txt - Predict the survival status of individual passengers on the Titanic based
        on their passenger class, age and gender.
        For the dataset files
         The first line of the file will contain the name of the fields.
         The last column is the classification attribute, and will always contain the
        values yes or no.
         All files are tab delimited.
        When you run your program, it should take a command-line parameter that contains the name
        of the file containing the training data. For example:
        python decisiontreeassignment.py tennis.txt
        And it should output the training set accuracy in some readable form. You do not need to
        print or display the resulting tree (unless you want to).
        2. Max Tree Depth (15%)
        - First complete Q2 using scikit-learn (sklearn) library (10%)
        - Next complete Q2 without using any ML libraries (5%)
        Add to your implementation so that you can limit the maximin tree depth. It should now take
        an additional command-line parameter that sets the maximum tree depth. For example:
        python decisiontreeassignment.py tennis.txt 5
        3. Test Set (15%)
        - First complete Q3 using scikit-learn (sklearn) library (10%)
        - Next complete Q3 without using any ML libraries (5%)
        Add to your implementation so that you can also pass a file containing data not in the training
        data. It should now output the training set accuracy as well as the testing set accuracy in some
        readable form.
        The command-line call should now have a third parameter containing the name of the file
        containing the testing data. For example:
        python decisiontreeassignment.py tennis_trainingset.txt 5 tennis_testset.txt
        You can create training and testing sets by (randomly) splitting the available data
        appropriately.
        Submission
        Assignments to be completed individually and submitted through blackboard.
        Due date
        Friday Aug 16 3pm.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當(dāng)前頁
      1. 上一篇:代寫代做INF10025 Data Management and Analytic
      2. 下一篇:代做BSAN3212、代寫c/c++,Python程序語言
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設(shè)計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 精品福利一区二区三| 天堂一区二区三区精品| 日本无卡码免费一区二区三区| 日韩十八禁一区二区久久| 无码人妻精品一区二区三区东京热| 午夜福利无码一区二区| 久久久91精品国产一区二区| 久久精品人妻一区二区三区| 黑人一区二区三区中文字幕| 国内精品视频一区二区八戒| 精品一区二区视频在线观看| 人妻夜夜爽天天爽爽一区| 高清一区二区三区视频| 精品理论片一区二区三区| 韩国一区二区三区视频| 成人h动漫精品一区二区无码| 亚洲一区二区三区91| 日韩内射美女人妻一区二区三区| 中文字幕aⅴ人妻一区二区| 亚洲AV日韩精品一区二区三区| 无码视频一区二区三区| 亚洲性色精品一区二区在线| 99精品一区二区三区无码吞精 | 午夜视频一区二区三区| 日韩国产免费一区二区三区| 久久伊人精品一区二区三区 | 一夲道无码人妻精品一区二区| 人妻体内射精一区二区| 国产精品一区二区三区99| 一区二区三区人妻无码| 少妇激情一区二区三区视频| 老熟女五十路乱子交尾中出一区| 中文字幕视频一区| 日韩精品国产一区| 亚洲第一区精品观看| 国产乱码精品一区二区三区中文| 亚洲国产成人一区二区三区 | 日本免费一区二区三区最新| 免费人人潮人人爽一区二区| 红桃AV一区二区三区在线无码AV | 人妻aⅴ无码一区二区三区|