99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                免费成人在线观看| 成人精品视频.| 成人免费视频视频| 国产精品网站导航| 91蝌蚪国产九色| 香蕉成人伊视频在线观看| 91精品国产日韩91久久久久久| 男女激情视频一区| 国产精品亲子伦对白| 欧美吻胸吃奶大尺度电影| 亚洲一区成人在线| 久久综合久色欧美综合狠狠| 成人福利电影精品一区二区在线观看| 亚洲老司机在线| 欧美刺激午夜性久久久久久久| 久久99国产精品麻豆| 综合自拍亚洲综合图不卡区| 欧美乱熟臀69xxxxxx| 懂色av中文一区二区三区| 一区二区欧美国产| 欧美国产一区二区| 日韩欧美精品在线视频| 欧美在线观看视频在线| 国产盗摄女厕一区二区三区| 一区二区三区四区视频精品免费 | 亚洲三级电影网站| 在线91免费看| 一本到不卡精品视频在线观看| 久色婷婷小香蕉久久| 中文字幕中文字幕在线一区| 日韩一区二区三区观看| 欧美制服丝袜第一页| 国产一区美女在线| 日本不卡一二三区黄网| 一区二区在线免费观看| 欧美极品少妇xxxxⅹ高跟鞋| 51精品视频一区二区三区| 成人国产精品视频| 久久99国产精品麻豆| 亚洲成a人片综合在线| 日韩理论在线观看| 综合激情网...| 国产精品热久久久久夜色精品三区 | 视频在线在亚洲| 亚洲精品福利视频网站| 国产精品素人视频| 久久精品亚洲乱码伦伦中文| 精品国产乱码91久久久久久网站| 在线成人小视频| 欧美日韩dvd在线观看| 欧美亚洲综合一区| 欧美在线看片a免费观看| 91久久精品一区二区三| 日本精品视频一区二区| 色综合亚洲欧洲| 91丨porny丨中文| 91丨porny丨蝌蚪视频| 99视频一区二区| 日本精品视频一区二区| 色偷偷88欧美精品久久久| 在线免费观看日本一区| www.综合网.com| 播五月开心婷婷综合| 色综合中文字幕国产| 夫妻av一区二区| 99久久er热在这里只有精品15| 成人国产免费视频| 欧美日韩精品一区二区三区| 欧美一区二区性放荡片| 欧美大片在线观看| 国产精品久久久久久久久免费樱桃| 久久网这里都是精品| 国产精品久久免费看| 亚洲一区二区不卡免费| 天堂蜜桃91精品| 国产高清久久久久| 91网站最新地址| 91精品国产品国语在线不卡| 欧美一级黄色录像| 久久蜜桃一区二区| 最新不卡av在线| 午夜精品久久久久久久| 免费人成在线不卡| 国模套图日韩精品一区二区| 99久久综合国产精品| 91久久免费观看| 精品国产一区二区三区忘忧草| 精品国产百合女同互慰| 亚洲欧美日韩国产一区二区三区| 午夜精品视频一区| 成人免费看的视频| 欧美一级精品在线| 一区二区三区在线免费| 国产乱人伦偷精品视频不卡| 欧美伊人久久久久久午夜久久久久| 精品国产一区二区三区四区四| 亚洲中国最大av网站| 国产.欧美.日韩| 日韩欧美中文字幕制服| 亚洲国产精品一区二区久久恐怖片 | 亚洲蜜臀av乱码久久精品蜜桃| 极品少妇一区二区| 欧美日韩久久一区二区| 中文字幕一区二区三区视频| 蜜臀国产一区二区三区在线播放| 日本高清视频一区二区| 国产欧美日韩卡一| 久久精品国产精品青草| 欧美在线视频你懂得| 国产日韩欧美精品在线| 青青草国产成人99久久| 91美女片黄在线观看| 国产精品三级av在线播放| 精品一区二区免费在线观看| 日韩一区二区在线观看| 亚洲国产欧美在线人成| av不卡免费电影| 国产精品久久久久久久久免费丝袜| 国产一区福利在线| 久久免费电影网| 国产一区二三区好的| 2024国产精品| 国产成人夜色高潮福利影视| 精品国产青草久久久久福利| 日韩电影在线观看一区| 日韩一区二区免费电影| 久久精品理论片| 久久久久久日产精品| 国产在线不卡视频| 中文字幕av在线一区二区三区| 国产成人av一区二区三区在线观看| 国产亚洲午夜高清国产拍精品| 国产一区二区三区免费| 日本一区二区免费在线 | 717成人午夜免费福利电影| 亚洲日本青草视频在线怡红院| 91麻豆免费看片| 亚洲一线二线三线视频| 欧美视频三区在线播放| 性做久久久久久久久| 欧美v国产在线一区二区三区| 久久er精品视频| 国产精品理论片| 欧美吻胸吃奶大尺度电影| 日韩福利电影在线| 久久久精品国产免费观看同学| 国产91清纯白嫩初高中在线观看| 中文字幕一区二区三区在线播放 | 精品久久久久久久人人人人传媒| 国产精品夜夜爽| 亚洲精品国产精华液| 欧美精品乱人伦久久久久久| 九色综合国产一区二区三区| 国产精品毛片高清在线完整版| 欧美性色黄大片手机版| 蜜臀精品一区二区三区在线观看 | 成人av片在线观看| 亚洲人123区| 欧美不卡一区二区三区| www.亚洲色图.com| 免费成人在线观看| 亚洲欧美日韩在线| 欧美一区二区美女| 色妞www精品视频| 国产精品99久久久久久似苏梦涵| 亚洲乱码一区二区三区在线观看| 欧美成人a在线| 欧美精品xxxxbbbb| 97久久精品人人做人人爽50路| 日本特黄久久久高潮| 亚洲丝袜制服诱惑| 26uuu国产日韩综合| 欧美日韩不卡在线| 91在线你懂得| 岛国av在线一区| 青青草国产精品亚洲专区无| 亚洲精品久久久蜜桃| 国产夜色精品一区二区av| 欧美一区二区三区四区五区| 色综合视频在线观看| 国产成人激情av| 国产一区二区在线视频| 免费成人性网站| 日韩av电影免费观看高清完整版| 一区二区三区影院| 国产精品网友自拍| 欧美激情中文不卡| 久久综合色8888| 久久综合久色欧美综合狠狠| 日韩欧美一区二区免费| 欧美久久一二区| 欧美肥妇bbw| 91精品国产色综合久久不卡电影| 91福利视频网站| 在线视频欧美精品| 91久久精品网| 欧美丝袜丝nylons| 欧美久久一区二区| 欧美一区二区三区免费视频| 67194成人在线观看|