99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP5328代做、代寫Python程序語言
COMP5328代做、代寫Python程序語言

時間:2024-09-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP5**8 - Advanced Machine Learning
Assignment 1
Due: 19/09/2024, 11:59PM
This assignment is to be completed in groups of 3 to 4 students. It is worth 25%
of your total mark.
1 Objective
The objective of this assignment is to implement Non-negative Matrix Factorization
 (NMF) algorithms and analyze the robustness of NMF algorithms when the
dataset is contaminated by large magnitude noise or corruption. More speciffcally,
you should implement at least two NMF algorithms and compare their robustness.
2 Instructions
2.1 Dataset description
In this assignment, you need to apply NMF algorithms on two real-world face
image datasets: (1) ORL dataset
1
; (2) Extended YaleB dataset
2
.
• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images
per subject). For some subjects, the images were taken at different times,
varying the lighting, facial expressions and facial details (glasses / no glasses).
All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position. All images are cropped and resized
to 92×112 pixels.
• Extended YaleB dataset: it contains 2414 images of 38 subjects under
9 poses and 64 illumination conditions. All images are manually aligned,
cropped, and then resized to 168×192 pixels.
1https://cam-orl.co.uk/facedatabase.html
2http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
1Figure 1: An example face image and its occluded versions by b × b-blocks with
b = 10, 12, and 14 pixels.
Note: we provide a tutorial for this assignment, which contains example code for
loading a dataset to numpy array. Please ffnd more details in assignment1.ipynb.
2.2 Assignment tasks
1. You need to implement at least two Non-negative Matrix Factorization (NMF)
algorithms:
• You should implement at least two NMF algorithms with at least one
not taught in this course (e.g., L**Norm Based NMF, Hypersurface Cost
Based NMF, L**Norm Regularized Robust NMF, and L2,**Norm Based
NMF).
• For each algorithm, you need to describe the deffnition of the objective
function as well as the optimization methods used in your implementation.
2.
 You need to analyze the robustness of each algorithm on two datasets:
• You are allowed to design your own data preprocessing method (if necessary).

You need to use a block-occlusion noise similar to those shown in Figure
1. The noise is generated by setting the pixel values to be 255 in the
block. You can design your own value for b (not neccessary to be 10, 12
or 14). You are also encouraged to design your own noise other than
the block-occlusion noise.
2• You need to demonstrate each type of noise used in your experiment
(show the original image as well as the image contaminated by noise).
• You should carefully choose the NMF algorithms and design experiment
settings to clearly show the different robustness of the algorithms you
have implemented.
3. You are only allowed to use the python standard library, numpy and
scipy (if necessary) to implement NMF algorithms.
2.3 Programming and External Libraries
This assignment is required to be ffnished by Python3. When you implement
NMF algorithms, you are not allowed to use external libraries which contains
NMF implementations, such as scikit-learn, and Nimfa (i.e., you have to implement
 the NMF algorithms by yourself). You are allowed to use scikit-learn
for evaluation only (please ffnd more details in assignment1.ipynb). If you have
any ambiguity whether you can use a particular library or a function, please post
on canvas under the ”Assignment 1” thread.
2.4 Evaluate metrics
To compare the performance and robustness of different NMF algorithms, we provide
 three evaluation metrics: (1) Relative Reconstruction Errors; (2) Average
Accuracy (optional); (3) Normalized Mutual Information (optional). For all
experiments, you need to use at least one metric, i.e., Relative Reconstruction
 Errors. You are encouraged to use the other two metrics, i.e., Average
Accuracy and Normalized Mutual Information.
• Relative Reconstruction Errors (RRE): let V denote the contaminated
dataset (by adding noise), and Vˆ denote the clean dataset. Let W and H
denote the factorization results on V , the relative reconstruction errors
then can be deffned as follows:
RRE =
∥Vˆ − WH∥F
∥Vˆ ∥F
. (1)
• Average Accuracy: Let W and H denote the factorization results on
V , you need to perform some clustering algorithms (i.e., K-means) with
num clusters equal to num classes. Each example is assigned with the
cluster label (please ffnd more details in assignment1.ipynb). Lastly, you
3can evaluate the accuracy of predictions Ypred as follows:
Acc(Y, Ypred) =
 1
n
Xn
i=1
1{Ypred(i) == Y (i)}.
• Normalized Mutual Information (NMI):
NMI(Y, Ypred) =
2I(Y, Ypred)
H(Y ) + H(Ypred)
,
where I(·, ·) is mutual information and H(·) is entropy.
Note: we expect you to have a rigorous performance evaluation. To provide
an estimate of the performance of the algorithms in the report, you can repeat
multiple times (e.g., 5 times) for each experiment by randomly sampling **% data
from the whole dataset, and average the metrics on different subset. You are also
required to report the standard deviations.
3 Report
The report should be organized similar to research papers, and should contain the
following sections:
• In abstract, you should brieffy introduce the topic of this assignment and
describe the organization of your report.
• In introduction, you should ffrst introduce the main idea of NMF as well
as its applications. You should then give an overview of the methods you
want to use.
• In related work, you are expected to review the main idea of related NMF
algorithms (including their advantages and disadvantages).
• In methods, you should describe the details of your method (including
the deffnition of cost functions as well as optimization steps). You should
also describe your choices of noise and you are encouraged to explain the
robustness of each algorithm from theoretical view.
• In experiment, ffrstly, you should introduce the experimental setup (e.g.,
datasets, algorithms, and noise used in your experiment for comparison).
Second, you should show the experimental results and give some comments.
• In conclusion, you should summarize your results and discuss your insights
for future work.
4• In reference, you should list all references cited in your report and formatted
all references in a consistent way.
The layout of the report:
• Font: Times New Roman; Title: font size 14; Body: font size 12
• Length: Ideally 10 to 15 pages - maximum 20 pages
Note: Submissions must be typeset in LaTex using the provided template.
4 Submissions
Detailed instructions are as follows:
1. The submission contains two parts: report and source code.
(a) report (a pdf ffle): the report should include each member’s details
(student id and name).
(b) code (a compressed folder)
i. algorithm (a sub-folder): your code could be multiple ffles.
ii. data (an empty sub-folder): although two datasets should be inside
the data folder, please do not include them in the zip ffle. We will
copy two datasets to the data folder when we test the code.
2. The report (ffle type: pdf) and the codes (ffle type: zip) must be named
as student ID numbers of all group members separated by underscores. For
example, “xxxxxxxx xxxxxxxx xxxxxxxx.pdf”.
3. OOnly one student needs to submit your report (ffle type: pdf) to Assignment
 1 (report) and upload your codes (ffle type: zip) to Assignment 1
(codes).
4. Your submission should include the report and the code. A plagiarism
checker will be used.
5. You need to clearly provide instructions on how to run your code in the
appendix of the report.
6. You need to indicate the contribution of each group member.
7. A penalty of minus 5 (5%) marks per each day after due (email late submissions
 to TA and conffrm late submission dates with TA). Maximum delay is
10 days, after that assignments will not be accepted.
55 Marking scheme
Category Criterion Marks Comments
Report [80]
 Abstract [3]
•problem, methods, organization.
Introduction [5]
•What is the problem you intend to solve?
•Why is this problem important?
Previous work [6]
•Previous relevant methods used in literature?
Methods [25]
•Pre-processing (if any)
•NMF Algorithm’s formulation.
•Noise choice and description.
Experiments and Discussions [25]
•Experiments, comparisons and evaluation
•Extensive analysis and discussion of results
•Relevant personal reflection
Conclusions and Future work [3]
•Meaningful conclusions based on results
•Meaningful future work suggested
Presentation [5]
•Grammatical sentences, no spelling mistakes
•Good structure and layout, consistent formatting
•Appropriate
citation and referencing
•Use graphs and tables to summarize data
Other [8]
•At the discretion of the marker: for impressing
the marker, excelling expectation,
etc. Examples include clear presentation,
well-designed experiment, fast code, etc.
6Category Criterion Marks Comments
Code [20]
•Code runs within a feasible time
•Well organized, commented and documented
Penalties [−]
•Badly written code: [−20]
•Not including instructions on how to run
your code: [−20]
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero).
7

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代做4CM508、SQL編程語言代寫
  • 下一篇:CEG 4136代做、代寫Java/c++設(shè)計編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产色综合一区| 精品国产伦一区二区三区观看方式 | 老司机精品视频一区二区三区| 亚洲视频狠狠干| 日本一区二区免费在线| 国产欧美日韩激情| 国产精品卡一卡二| 亚洲欧美在线视频观看| 亚洲精品免费电影| 亚洲午夜电影网| 日韩经典中文字幕一区| 免费成人深夜小野草| 裸体健美xxxx欧美裸体表演| 久久精品国产免费看久久精品| 日本美女一区二区| 国产一区二区三区电影在线观看| 精品一区二区三区在线视频| 国产成人综合视频| 91天堂素人约啪| 欧美乱妇15p| 日韩三级中文字幕| 久久精品欧美日韩| 亚洲精品视频免费观看| 婷婷综合久久一区二区三区| 麻豆一区二区99久久久久| 国产一区二区精品久久99| 国产精品99久久久久久似苏梦涵 | 国产精品国产自产拍高清av| 亚洲天堂av一区| 亚洲精品写真福利| 视频一区二区三区入口| 激情文学综合网| 一本色道久久综合亚洲精品按摩| 欧美色爱综合网| 久久蜜桃香蕉精品一区二区三区| 国产精品三级av在线播放| 亚洲国产wwwccc36天堂| 国内一区二区视频| 91在线你懂得| 久久婷婷久久一区二区三区| 亚洲三级在线观看| 久久成人久久爱| 在线日韩av片| 欧美mv日韩mv| 国产精品素人一区二区| 日韩av一区二区三区四区| av影院午夜一区| 精品国产一区二区三区忘忧草| 一区二区三区不卡在线观看 | 欧美一区三区二区| 亚洲色图另类专区| 国产成人精品亚洲777人妖| 91精品国产91久久久久久最新毛片 | 欧美另类久久久品| 日韩美女啊v在线免费观看| 久久精品国产77777蜜臀| 欧美在线制服丝袜| 最新久久zyz资源站| 国产一区二区三区综合| 91精品中文字幕一区二区三区| 国产精品福利影院| 国产成人av网站| 精品福利在线导航| 理论片日本一区| 欧美一区日韩一区| 午夜久久久久久电影| 91久久久免费一区二区| 综合久久久久久久| www.亚洲精品| 中文字幕在线不卡一区| 国产成人丝袜美腿| 久久久久国产成人精品亚洲午夜| 奇米一区二区三区| 日韩美一区二区三区| 日韩电影在线观看电影| 欧美美女激情18p| 午夜视频在线观看一区二区三区| 色偷偷久久人人79超碰人人澡| 国产精品久久久久久户外露出 | 不卡欧美aaaaa| 中文幕一区二区三区久久蜜桃| 韩国女主播成人在线| 久久先锋影音av鲁色资源网| 精品中文av资源站在线观看| 日韩美一区二区三区| 精品一区二区三区久久久| 欧美电影精品一区二区| 免费成人在线观看| 精品国产91九色蝌蚪| 国产一区二区在线看| 欧美国产成人精品| 99久久精品久久久久久清纯| 中文字幕亚洲区| 一本色道亚洲精品aⅴ| 亚洲成人免费视| 日韩一区二区三区电影在线观看| 性感美女极品91精品| 91精品在线免费观看| 国产做a爰片久久毛片| 久久嫩草精品久久久精品| 成人白浆超碰人人人人| 亚洲国产一区二区在线播放| 日韩精品一区在线观看| 成人黄色国产精品网站大全在线免费观看 | 国产精品久久久久久久久晋中 | 国产不卡视频在线播放| 国产精品久久久久久久久果冻传媒| 99精品视频在线观看| 亚洲五码中文字幕| 久久综合狠狠综合久久综合88| 99久久国产免费看| 美女视频黄免费的久久 | 欧美韩日一区二区三区| 在线亚洲欧美专区二区| 久久精品国产免费看久久精品| 国产精品麻豆欧美日韩ww| 欧美视频一区二区| 国产一区二区中文字幕| 亚洲国产日韩a在线播放性色| 欧美成人一区二区三区在线观看| www.激情成人| 精品一区二区三区欧美| 亚洲一区日韩精品中文字幕| 久久嫩草精品久久久精品一| 91福利视频网站| 国产精品系列在线播放| 日日夜夜精品视频免费| 日韩理论片在线| 久久色中文字幕| 91精品国产欧美一区二区18| 91在线观看污| 国产精品66部| 麻豆国产欧美日韩综合精品二区| 亚洲色图制服诱惑| 国产女同互慰高潮91漫画| 欧美疯狂做受xxxx富婆| 91丝袜美腿高跟国产极品老师| 激情国产一区二区 | 国产精品丝袜一区| 欧美一个色资源| 欧美在线视频全部完| 豆国产96在线|亚洲| 久久99国产精品免费| 日韩精品电影在线观看| 亚洲成人精品一区二区| 亚洲精品自拍动漫在线| 亚洲色图.com| 中文字幕精品一区二区精品绿巨人 | 麻豆91精品视频| 图片区小说区国产精品视频| 洋洋成人永久网站入口| 亚洲欧美一区二区三区极速播放| 国产喷白浆一区二区三区| 久久免费精品国产久精品久久久久| 欧美日韩一区三区四区| 在线看日本不卡| 色婷婷综合久久久中文一区二区| 99精品欧美一区二区蜜桃免费| 高清久久久久久| 成人免费视频国产在线观看| 国产精品1024久久| 国产精品亚洲第一区在线暖暖韩国| 精品一区二区久久久| 国产一区二区免费在线| 精品制服美女丁香| 国产一区二区导航在线播放| 国产一区在线观看麻豆| 国产福利一区二区三区视频 | 日韩中文字幕1| 日韩高清欧美激情| 久久91精品久久久久久秒播| 国产又黄又大久久| 高清国产一区二区| 91丝袜美腿高跟国产极品老师| 一本久道久久综合中文字幕| 欧美日韩一级大片网址| 欧美一级一级性生活免费录像| 日韩欧美成人一区| 久久久www成人免费无遮挡大片 | 亚洲自拍另类综合| 五月天激情综合| 国产专区综合网| 一本色道久久加勒比精品| 在线播放欧美女士性生活| 精品国产91亚洲一区二区三区婷婷| 欧美激情一区二区| 亚洲国产一区视频| 国产综合色在线| 99久久婷婷国产综合精品电影| 欧美日韩免费一区二区三区视频| 日韩欧美成人午夜| 亚洲视频在线一区观看| 午夜精品一区二区三区三上悠亚| 蜜桃视频第一区免费观看| 成人18精品视频| 日韩三级视频在线观看| 综合电影一区二区三区| 美腿丝袜亚洲三区| 日本乱人伦aⅴ精品| 日韩精品自拍偷拍|