合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫AI6012程序、代做Java/c++編程
        代寫AI6012程序、代做Java/c++編程

        時間:2024-09-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        AI6012: Machine Learning Methodologies &
        Applications Assignment (25 points)
        Important notes: to ffnish this assignment, you are allowed to look up textbooks or
        search materials via Google for reference. NO plagiarism from classmates is allowed.
        The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
        is a single PDF (no source codes are required to be submitted). Multiple submission
        attempts are allowed, and the last one will be graded. A submission link is available
        under “Assignments” of the course website in NTULearn.
        Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
        Based on the parametric forms of the conditional probabilities of each class introduced
        on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
        the learning procedure of regularized logistic regression for multi-class classiffcation
        problems.
        Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
        derive the gradient descent rules to update {w(c)}’s.
        Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
        1
        to
         train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
        classiffcation dataset. The details of instructions are described as follows.
        1. Download the a9a dataset from the LIBSVM Dataset page.
        This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
        Learning Repository
        2
        , which consists of a training set (available here) and a test
        set (available here).
        Each ffle (the train set or the test set) is a text format in which each line represents
        a labeled data instance as follows:
        label index1:value1 index2:value2 ...
        where “label” denotes the class label of each instance, “indexT” denotes the
        T-th feature, and valueT denotes the value of the T-th feature of the instance.
        1Read Pages 63-64 of the lecture notes of L5 for reference
        2The details of the original Adult dataset can be found here.
        1This is a sparse format, where only non-zero feature values are stored for each
        instance. For example, suppose given a data set, where each data instance has 5
        dimensions (features). If a data instance whose label is “+1” and the input data
        instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
        +1 1:2 3:2.5 4:4.3
        Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
        such a sparse data format. Detailed information is available here.
        2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
         accuracy on the training set with different values of the parameter C in
        {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
        other parameters, you can simply use the default values or specify the speciffc
        values you used in your submitted PDF ffle.
        Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
        kernel on the a9a training set (in accuracy).
        C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
        ? ? ? ? ?
        3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
         accuracy on the training set with different values of the parameter gamma
        (i.e., σ
        2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
        the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
        Note that for all the other parameters, you can simply use the default values or
        specify the speciffc values you used in your submitted PDF ffle.
        Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
        with rbf kernel on the a9a training set (in accuracy).
        Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
        sciki-learn. However, you can use some APIs under the category “Model Selection
        → Model validation” to implement it. Some examples can be found here.
        4. Based on the results shown in Tables **2, determine the best kernel and the best
        parameter setting. Use the best kernel with the best parameter setting to train a
        SVM using the whole training set and make predictions on test set to generate
        the following table:
        2Table 3: Test results of SVC on the a9a test set (in accuracy).
        Specify which kernel with what parameter setting
        Accuracy of SVMs ?
        Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
        be re-formulated as an instance of empirical structural risk minimization (refer to Page
        37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
        loss.
        Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
        linear regression model (L3) to solve nonlinear regression problems. Derive a
        closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
        Page 50 of L3).


        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
      2. 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 射精专区一区二区朝鲜| 日本精品视频一区二区三区| 中文无码一区二区不卡αv| 天天视频一区二区三区| 四虎成人精品一区二区免费网站| 日本免费一区二区久久人人澡| 国产精品一区二区不卡| 国产人妖在线观看一区二区| 制服丝袜一区在线| 亚洲av高清在线观看一区二区| 97se色综合一区二区二区| 又硬又粗又大一区二区三区视频| 无码视频免费一区二三区| 精品少妇ay一区二区三区| 精品国产免费一区二区三区香蕉| 无码AV天堂一区二区三区| 日韩免费无码一区二区三区 | 亚洲av无码一区二区三区在线播放 | 国产在线一区二区视频| 久久91精品国产一区二区| 一区二区三区日本视频| 精品一区二区三区色花堂| 国产丝袜一区二区三区在线观看| 色妞色视频一区二区三区四区| 成人影片一区免费观看| 熟女少妇丰满一区二区| tom影院亚洲国产一区二区| 亚洲一区动漫卡通在线播放| 亚洲一区二区三区偷拍女厕 | 国模精品视频一区二区三区| 精品无码人妻一区二区免费蜜桃| 亚洲日本乱码一区二区在线二产线 | 国产亚洲一区二区三区在线不卡| 无码精品前田一区二区| 国产在线精品一区二区不卡麻豆| 亚洲午夜精品一区二区| 夜夜精品视频一区二区| 亚洲高清偷拍一区二区三区 | 日本一区视频在线播放| 亚洲午夜福利AV一区二区无码 | 无码人妻久久久一区二区三区|