99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI6012程序、代做Java/c++編程
代寫AI6012程序、代做Java/c++編程

時間:2024-09-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI6012: Machine Learning Methodologies &
Applications Assignment (25 points)
Important notes: to ffnish this assignment, you are allowed to look up textbooks or
search materials via Google for reference. NO plagiarism from classmates is allowed.
The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
is a single PDF (no source codes are required to be submitted). Multiple submission
attempts are allowed, and the last one will be graded. A submission link is available
under “Assignments” of the course website in NTULearn.
Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
Based on the parametric forms of the conditional probabilities of each class introduced
on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
the learning procedure of regularized logistic regression for multi-class classiffcation
problems.
Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
derive the gradient descent rules to update {w(c)}’s.
Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
1
to
 train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
classiffcation dataset. The details of instructions are described as follows.
1. Download the a9a dataset from the LIBSVM Dataset page.
This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
Learning Repository
2
, which consists of a training set (available here) and a test
set (available here).
Each ffle (the train set or the test set) is a text format in which each line represents
a labeled data instance as follows:
label index1:value1 index2:value2 ...
where “label” denotes the class label of each instance, “indexT” denotes the
T-th feature, and valueT denotes the value of the T-th feature of the instance.
1Read Pages 63-64 of the lecture notes of L5 for reference
2The details of the original Adult dataset can be found here.
1This is a sparse format, where only non-zero feature values are stored for each
instance. For example, suppose given a data set, where each data instance has 5
dimensions (features). If a data instance whose label is “+1” and the input data
instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
+1 1:2 3:2.5 4:4.3
Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
such a sparse data format. Detailed information is available here.
2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter C in
{0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
other parameters, you can simply use the default values or specify the speciffc
values you used in your submitted PDF ffle.
Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
kernel on the a9a training set (in accuracy).
C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
? ? ? ? ?
3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
 accuracy on the training set with different values of the parameter gamma
(i.e., σ
2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
Note that for all the other parameters, you can simply use the default values or
specify the speciffc values you used in your submitted PDF ffle.
Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
with rbf kernel on the a9a training set (in accuracy).
Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
sciki-learn. However, you can use some APIs under the category “Model Selection
→ Model validation” to implement it. Some examples can be found here.
4. Based on the results shown in Tables **2, determine the best kernel and the best
parameter setting. Use the best kernel with the best parameter setting to train a
SVM using the whole training set and make predictions on test set to generate
the following table:
2Table 3: Test results of SVC on the a9a test set (in accuracy).
Specify which kernel with what parameter setting
Accuracy of SVMs ?
Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
be re-formulated as an instance of empirical structural risk minimization (refer to Page
37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
loss.
Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
linear regression model (L3) to solve nonlinear regression problems. Derive a
closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
Page 50 of L3).


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
  • 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲愉拍自拍另类高清精品| 国产传媒久久文化传媒| 麻豆精品国产91久久久久久| 欧美视频你懂的| 亚洲一区二区五区| 欧美午夜精品久久久久久孕妇| 亚洲精品免费视频| 欧美巨大另类极品videosbest| 日韩不卡手机在线v区| 欧美日韩电影在线播放| 久久精品国产一区二区三区免费看| 日韩片之四级片| 久久99精品久久久久久久久久久久| 久久亚洲捆绑美女| 91丨porny丨蝌蚪视频| 亚洲第一综合色| 欧美一区二区三区在线观看视频| 日韩av在线发布| 中文av字幕一区| 欧美日韩高清在线| 欧美一级淫片007| 欧美午夜不卡在线观看免费| 欧美三级日韩三级国产三级| 精品捆绑美女sm三区| 中文字幕一区二区三区不卡在线 | 国产精品久久久久久久午夜片| 精品久久久久久久久久久久久久久久久| 日韩高清不卡一区二区| www久久精品| 91精品办公室少妇高潮对白| 激情综合色丁香一区二区| 综合电影一区二区三区| 欧美一区三区二区| 91免费视频观看| 国产一区久久久| 日本不卡123| 综合网在线视频| 久久久噜噜噜久久中文字幕色伊伊| 亚洲成人午夜电影| 日韩精品成人一区二区三区| 欧美不卡一二三| 欧美日韩一区久久| 高清shemale亚洲人妖| 香蕉av福利精品导航| 亚洲日本va在线观看| 久久久亚洲精品石原莉奈| 欧美日韩国产综合一区二区三区 | 国产尤物一区二区| 夜夜夜精品看看| 亚洲人成影院在线观看| 国产免费久久精品| 中文字幕+乱码+中文字幕一区| 精品成人在线观看| 日韩无一区二区| 精品久久人人做人人爰| 日韩欧美在线综合网| 日韩视频免费观看高清在线视频| 日韩视频免费观看高清完整版在线观看| 国产亚洲一区二区在线观看| 日日噜噜夜夜狠狠视频欧美人| 成人一二三区视频| 香蕉久久夜色精品国产使用方法 | 国产美女av一区二区三区| 久久精品国产成人一区二区三区| 五月婷婷久久综合| 免费人成精品欧美精品 | 91麻豆精品久久久久蜜臀| 欧美精品一二三区| 国产精品毛片无遮挡高清| 国产亚洲综合av| 国产福利91精品| 国产亚洲欧美一区在线观看| 欧美日韩精品欧美日韩精品一综合| 欧日韩精品视频| 欧美午夜精品久久久久久超碰 | 91一区一区三区| 色婷婷久久一区二区三区麻豆| 99热精品国产| 色综合天天综合网国产成人综合天 | 日韩亚洲欧美成人一区| 91精品国产色综合久久久蜜香臀| 欧美一级电影网站| 国产精品视频线看| 中文字幕在线观看不卡视频| 亚洲影院在线观看| 偷拍与自拍一区| 高清免费成人av| 97久久超碰国产精品| 日本大香伊一区二区三区| 欧美亚洲另类激情小说| 欧美精品在欧美一区二区少妇| 欧美精品色一区二区三区| 欧美电视剧在线观看完整版| 久久这里只精品最新地址| 久久久久久久性| 天天影视色香欲综合网老头| 日韩精品色哟哟| 91在线观看地址| 制服丝袜在线91| 国产女人18毛片水真多成人如厕| 日韩精品一区二区三区在线观看| 亚洲丝袜制服诱惑| 日产国产欧美视频一区精品 | 亚洲国产aⅴ天堂久久| 日韩av网站在线观看| 国产精品系列在线播放| 国产成人一级电影| 欧美撒尿777hd撒尿| 日韩欧美在线综合网| 亚洲同性gay激情无套| 亚洲成人综合网站| 懂色av一区二区夜夜嗨| 欧美日韩综合在线免费观看| 亚洲精品一区二区三区福利| 亚洲欧美电影一区二区| 爽好多水快深点欧美视频| 国产精品一区二区在线播放| 91久久精品国产91性色tv| 制服丝袜日韩国产| 国产精品伦理在线| 天堂av在线一区| 99视频国产精品| 日韩欧美电影一区| 亚洲天堂精品在线观看| 99久久精品免费| 精品国产123| 顶级嫩模精品视频在线看| 麻豆国产欧美日韩综合精品二区 | 久久久电影一区二区三区| 丝袜亚洲另类欧美综合| 不卡在线观看av| 日韩免费视频一区二区| 亚洲香蕉伊在人在线观| 国产黄色91视频| 91麻豆免费观看| 一区二区高清免费观看影视大全| 福利一区二区在线观看| 国产欧美日韩精品在线| 美女在线视频一区| 欧美日韩在线三区| 国产精品午夜久久| av中文字幕一区| 国产精品人妖ts系列视频| 成人妖精视频yjsp地址| 国产精品青草综合久久久久99| 国产一区在线不卡| 中文字幕在线不卡| 91九色02白丝porn| 美女视频黄频大全不卡视频在线播放| 欧美视频一二三区| 国产精品主播直播| 日本一区二区成人| 色噜噜久久综合| 久久综合久久综合久久| av成人老司机| 日韩制服丝袜av| 7777精品伊人久久久大香线蕉经典版下载 | 免费视频最近日韩| 日韩亚洲欧美成人一区| 久久精品国产在热久久| 亚洲国产高清在线观看视频| 国产毛片一区二区| 一区二区三区在线播| 日韩一区二区在线观看视频播放| 蜜臀久久99精品久久久久宅男| 久久夜色精品一区| av福利精品导航| 免费成人av资源网| 精品国产123| 欧美性一区二区| 国产精品1024| 亚洲乱码国产乱码精品精的特点| 欧美一级高清大全免费观看| 激情综合色播激情啊| 亚洲一级二级三级在线免费观看| 欧美日韩你懂得| 97国产一区二区| 亚洲1区2区3区视频| 最近中文字幕一区二区三区| 欧美日韩国产一区二区三区地区| 日本午夜精品视频在线观看 | 国产精品资源站在线| 婷婷六月综合亚洲| 日本一区免费视频| 色噜噜狠狠色综合中国| 国产xxx精品视频大全| 亚洲美女淫视频| 日本一区二区视频在线观看| 欧美大胆一级视频| 色婷婷av一区二区三区大白胸| 国产黑丝在线一区二区三区| 亚洲大片在线观看| 一区二区三区 在线观看视频| 日韩一区二区免费电影| 色婷婷精品大在线视频| 亚洲一二三四在线| 亚洲精品久久嫩草网站秘色| 欧美日韩一区二区在线观看视频| 成人黄页毛片网站| jiyouzz国产精品久久|