合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做AM05 、SQL編程語言代寫
        代做AM05 、SQL編程語言代寫

        時(shí)間:2024-09-29  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



         AM05 Workshop 2 - Data acquisition from Spotify API
        Overview
        In this workshop, you will learn how to:
        Create a Spotify App Obtain the necessary credentials to access the Spotify API.
         Request an Access Token Authenticate your app to interact with the API.  Request Artist Data Fetch data for the UK's top 10 chart artists and their
        songs.
         Store Data in an SQL Database Design a simple database schema and insert the retrieved data.
        Prerequisites:
        Basic understanding of R programming.
        R and RStudio installed on your computer.
        Internet access.
        A Spotify account (free account is sufficient).
        No prior experience with APIs is required.
        Optional: An SQL database system installed (e.g., MySQL, SQLite).
         AM05 Workshop 2  Data acquisition from Spotify API 1

        Table of Contents
        Part 1 Setting Up Your Spotify Developer Account Step 1 Create a Spotify Account
        Step 2 Create a Spotify App
        Part 2 Authenticating and Obtaining an Access Token Step 1 Install Required R Packages
        Step 2 Set Up Authentication Credentials
        Step 3 Obtain an Access Token
        Part 3 Fetching Artist and Track Data
        Step 1 Identify the UK's Top 10 Chart Artists Step 2 Retrieve Artist Data
        Step 3 Retrieve Tracks for Each Artist
        Part 4 Designing and Populating the SQL Database Step 1 Define the Database Schema
        Step 2 Connect to the SQL Database from R Step 3 Create Tables in the Database
        Step 4 Insert Data into the Database Conclusion
        Appendix: Additional Resources
        Part 1: Setting Up Your Spotify Developer Account
        Step 1: Create a Free Spotify Account
        If you don't already have a Spotify account:
         Go to Spotify Sign Up.
         Follow the instructions to create a free account.
        Step 2: Create a Spotify App
         Navigate to the Spotify for Developers Dashboard.
        AM05 Workshop 2  Data acquisition from Spotify API 2
                             
         Log in with your Spotify account credentials.  Click on "Create an App".
        Provide an App Name and App Description (e.g., "AM05 workshop").
        Accept the Terms of Service and click "Create".
         Your app will be created, and you'll be redirected to the app's dashboard.
        Important:
        Client ID and Client Secret:
        On your app dashboard, you will see your Client ID.
        Click on "Show Client Secret" to view your Client Secret.
        Keep these credentials secure. Do not share them publicly or commit them to version control systems like GitHub.
        Part 2: Authenticating and Obtaining an Access Token
        To interact with the Spotify API, you need to authenticate your app and obtain an access token.
        Step 1: Set Up Authentication Credentials
        Create a file named .Renviron in your R project directory to store your credentials securely.
         In RStudio, go to File > New File > Text File.
         Add the following lines, replacing placeholders with your actual credentials:
         Save the file as .Renviron in your project directory.
        Note The .Renviron file is used by R to store environment variables securely.
        Step 2: Install Required R Packages
        Open R or RStudio on your computer. We'll use the httr and jsonlite packages for handling HTTP requests and parsing JSON data.
           SPOTIFY_CLIENT_ID='your_client_id_here'
        SPOTIFY_CLIENT_SECRET='your_client_secret_here'
           AM05 Workshop 2  Data acquisition from Spotify API 3

         install.packages("httr")
        install.packages("jsonlite")
        install.packages("tidyverse")  # For data manipulation
        Load the packages:
        Step 3: Obtain an Access Token
        Create a function to retrieve the access token.
         library(httr)
        library(jsonlite)
        library(tidyverse)
         get_spotify_access_token <- function() {
          client_id <- Sys.getenv("SPOTIFY_CLIENT_ID")
          client_secret <- Sys.getenv("SPOTIFY_CLIENT_SECRET")
          response <- POST(
            url = '<https://accounts.spotify.com/api/token>',
            accept_json(),
            authenticate(client_id, client_secret),
            body = list(grant_type = 'client_credentials'),
            encode = 'form'
        )
          if (response$status_code != 200) {
            stop("Failed to retrieve access token")
        }
          content <- content(response)
          return(content$access_token)
        }
        # Obtain the access token
        access_token <- get_spotify_access_token()
         AM05 Workshop 2  Data acquisition from Spotify API 4

        Part 3: Fetching Artist and Track Data Step 1: Identify the UK's Top 10 Chart Artists
        Since Spotify does not provide a direct API endpoint for charts, we'll manually list the UK's top 10 artists.
        For this exercise, you can use the current UK Top 10 chart from a reliable source (e.g., Official Charts, BBC Radio 1. For demonstration purposes, we'll use a sample list:
         top_artists <- c(
          "Ed Sheeran",
          "Dua Lipa",
          "Adele",
          "Stormzy",
          "Lewis Capaldi",
          "Calvin Harris",
          "Sam Smith",
          "Little Mix",
          "Harry Styles",
          "Rita Ora"
        )
        Step 2: Retrieve Artist Data
        Create a function to search for an artist and retrieve their Spotify ID.
         get_artist_id <- function(artist_name, access_token) {
          base_url <- '<https://api.spotify.com/v1/search>'
          response <- GET(
            url = base_url,
            query = list(q = artist_name, type = 'artist', limit =
        1),
            add_headers(Authorization = paste('Bearer', access_toke
        n)) )
          if (response$status_code != 200) {
        AM05 Workshop 2  Data acquisition from Spotify API 5

             stop("Failed to retrieve artist data")
          }
          content <- content(response)
          if (length(content$artists$items) == 0) {
            warning(paste("Artist not found:", artist_name))
            return(NA)
          }
          artist <- content$artists$items[[1]]
          # Return a list with artist details
          list(
            id = artist$id,
            name = artist$name,
            followers = artist$followers$total,
            genres = paste(artist$genres, collapse = ", "),
            popularity = artist$popularity,
            url = artist$external_urls$spotify
        ) }
        # Retrieve data for all top artists
        artist_data <- map_df(top_artists, ~ {
          Sys.sleep(1)  # To respect rate limits
          artist_info <- get_artist_id(.x, access_token)
          if (!is.na(artist_info$id)) {
            return(as_tibble(artist_info))
          } else {
            return(NULL)
          }
        })
        Explanation:
        We define get_artist_id to search for an artist and extract relevant
        information.
         AM05 Workshop 2  Data acquisition from Spotify API 6

        map_df from purrr (part of tidyverse ) applies the function to each artist in top_artists and combines the results into a data frame.
        We include Sys.sleep(1) to pause between requests and respect API rate limits.
        Step 3: Retrieve Tracks for Each Artist
        Create a function to get the top tracks for each artist.
              get_artist_top_tracks <- function(artist_id, access_token,
        market = "GB") {
          base_url <- paste0('<https://api.spotify.com/v1/artists/
        >', artist_id, '/top-tracks')
          response <- GET(
            url = base_url,
            query = list(market = market),
            add_headers(Authorization = paste('Bearer', access_toke
        n)) )
          if (response$status_code != 200) {
            stop("Failed to retrieve top tracks")
          }
          content <- content(response)
          tracks <- content$tracks
          track_list <- map_df(tracks, ~ {
            list(
              track_id = .x$id,
              track_name = .x$name,
              artist_id = artist_id,
              album_id = .x$album$id,
              album_name = .x$album$name,
              release_date = .x$album$release_date,
              popularity = .x$popularity,
              duration_ms = .x$duration_ms,
        AM05 Workshop 2  Data acquisition from Spotify API 7

               track_url = .x$external_urls$spotify
            )
        })
          return(track_list)
        }
        # Retrieve tracks for all artists
        track_data <- map_df(artist_data$id, ~ {
          Sys.sleep(1)  # To respect rate limits
          get_artist_top_tracks(.x, access_token)
        })
        Explanation:
        get_artist_top_tracks fetches the top tracks for a given artist.
        We use map_df to apply this function to each artist ID in artist_data .
        Part 4: Designing and Populating the SQL Database
        Step 1: Define the Database Schema
        We'll design a simple relational database with the following tables:  artists
        artist_id Primary Key) name
        followers
        genres
        popularity
        url  tracks
        track_id Primary Key) track_name
        artist_id Foreign Key)
            AM05 Workshop 2  Data acquisition from Spotify API 8

        album_id album_name release_date popularity duration_ms track_url
        Note We establish a relationship between artists and tracks via the artist_id . Step 2: Connect to the SQL Database from R
        For simplicity, we'll use SQLite, a lightweight, file-based database that doesn't require a server setup.
        Install and load the RSQLite package:
        Create a connection to an SQLite database file:
        Step 3: Create Tables in the Database Create the artists and tracks tables.
           install.packages("RSQLite")
        library(RSQLite)
         # Create or connect to the database file
        con <- dbConnect(SQLite(), dbname = "spotify_data.db")
         # Create 'artists' table
        dbExecute(con, "
          CREATE TABLE IF NOT EXISTS artists (
            artist_id TEXT PRIMARY KEY,
            name TEXT,
            followers INTEGER,
            genres TEXT,
            popularity INTEGER,
            url TEXT
        ) ")
        AM05 Workshop 2  Data acquisition from Spotify API 9

         # Create 'tracks' table
        dbExecute(con, "
          CREATE TABLE IF NOT EXISTS tracks (
            track_id TEXT PRIMARY KEY,
            track_name TEXT,
            artist_id TEXT,
            album_id TEXT,
            album_name TEXT,
            release_date TEXT,
            popularity INTEGER,
            duration_ms INTEGER,
            track_url TEXT,
            FOREIGN KEY (artist_id) REFERENCES artists (artist_id)
        ) ")
        Explanation:
        We use dbExecute to run SQL statements that modify the database structure. We define the data types for each column.
        Step 4: Insert Data into the Database Insert data into the artists table.
          # Insert artist data
        dbWriteTable(
          conn = con,
          name = "artists",
          value = artist_data,
          append = TRUE,
          row.names = FALSE
        )
        Insert data into the tracks table.
         # Insert track data
        dbWriteTable(
        AM05 Workshop 2  Data acquisition from Spotify API 10

           conn = con,
          name = "tracks",
          value = track_data,
          append = TRUE,
          row.names = FALSE
        )
        Verify the data insertion:
         # Query the artists table
        dbGetQuery(con, "SELECT * FROM artists")
        # Query the tracks table
        dbGetQuery(con, "SELECT * FROM tracks")
        After you're done, close the connection:
        Note: dbWriteTable automatically handles inserting data frames into the specified table.
        Conclusion
        Congratulations! You have successfully:
        Set up a Spotify Developer account and created an app. Authenticated and obtained an access token.
        Retrieved data for the UK's top 10 chart artists and their top tracks. Designed a simple relational database schema.
        Inserted the retrieved data into an SQL database using R.
        Bonus Step:
        Extend the schema to include additional data (e.g., album details, track
        features).
         dbDisconnect(con)
           AM05 Workshop 2  Data acquisition from Spotify API 11

        Appendix: Additional Resources Spotify Web API Documentation:
        https://developer.spotify.com/documentation/web-api/
        httr Package Documentation: https://cran.r- project.org/web/packages/httr/httr.pdf
        jsonlite Package Documentation: https://cran.r- project.org/web/packages/jsonlite/jsonlite.pdf
        RSQLite Package Documentation: https://cran.r- project.org/web/packages/RSQLite/RSQLite.pdf
        DBI Package Documentation: https://cran.r- project.org/web/packages/DBI/DBI.pdf
        Official Charts: https://www.officialcharts.com/ Important Notes:
        API Usage Compliance Ensure you comply with Spotify's Developer Terms of Service. Use the data responsibly and for educational purposes.
        Rate Limiting Be mindful of API rate limits. Avoid making excessive requests in a short period.
        Data Privacy Do not share personal or sensitive data. The data retrieved is publicly available information about artists and tracks.
        Security Keep your Client ID and Client Secret secure. Do not share them or include them in publicly accessible code repositories.
        Frequently Asked Questions
        Q1 I get an error saying "Failed to retrieve access token". What should I do?
        A Check that your Client ID and Client Secret are correctly set in the .Renviron file. Ensure there are no extra spaces or missing quotes.
        Q2 The artist_data or track_data data frames are empty. Why?
        A This could happen if the artist names are not found in the Spotify database. Ensure the artist names are correctly spelled. Also, check if the access token is valid.
                         AM05 Workshop 2  Data acquisition from Spotify API 12

        Q3 How can I view the data stored in the SQLite database?
        A You can use SQL queries within R using dbGetQuery . For example:
          # Get all artists
        artists <- dbGetQuery(con, "SELECT * FROM artists")
        # Get all tracks
        tracks <- dbGetQuery(con, "SELECT * FROM tracks")
        Alternatively, you can use a database browser tool like DB Browser for SQLite to view the database file.
        Q4 Can I use a different SQL database system?
        A Yes. You can use other databases like MySQL or PostgreSQL. You'll need to install the appropriate R packages ( RMySQL , RPostgres ) and adjust the connection parameters accordingly.
        Additional Exercises
        To deepen your understanding, consider the following exercises:
         Data Analysis Use SQL queries to find the most popular track among the top artists.
         Data Visualization Create plots showing the popularity distribution of tracks or the number of followers per artist.
         Extended Data Retrieval:
        Fetch additional data such as album details or audio features of tracks. Update the database schema to accommodate the new data.
         Error Handling:
        Improve the robustness of your functions by adding more
        comprehensive error handling and logging.
              AM05 Workshop 2  Data acquisition from Spotify API 13

        AM05 Workshop 2  Data acquisition from Spotify API 14




        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp












         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代寫COMP90049、代做Java/python程序設(shè)計(jì)
      2. 下一篇:ACST2001代寫、代做Python/c++設(shè)計(jì)編程
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 国产精品乱码一区二区三区 | 亚洲一区二区三区高清不卡| 91精品一区二区三区久久久久| 中文字幕一区二区三区精彩视频 | 日本一区二区三区不卡在线视频 | 亚洲一区二区久久| 久久久久人妻精品一区三寸| 精品国产一区二区三区久久蜜臀 | 无码人妻精品一区二区三区66 | 一区二区三区中文字幕| 国产在线精品一区二区高清不卡| 亚洲AV无码一区二区三区久久精品 | 亚洲韩国精品无码一区二区三区 | 国产一区二区三区美女| 伦精品一区二区三区视频| 久久精品国产一区二区三区| 日韩一区二区三区电影在线观看| 毛片一区二区三区| 日本一区二区不卡在线| 亚洲综合av永久无码精品一区二区 | 国产精品日韩欧美一区二区三区 | 成人精品一区二区电影| 国产精品一区二区久久| 波多野结衣一区二区三区| 精品福利视频一区二区三区| 亚洲影视一区二区| 人妻体内射精一区二区三区| 精品人伦一区二区三区潘金莲| 国产亚洲情侣一区二区无| 中文字幕在线观看一区 | 亚洲国产精品综合一区在线 | 日韩国产精品无码一区二区三区 | 天堂成人一区二区三区| 精品国产一区二区三区久久狼 | 无码精品一区二区三区免费视频| 久久亚洲一区二区| 亚洲色无码专区一区| 精品综合一区二区三区| 韩国福利一区二区三区高清视频| 国产亚洲3p无码一区二区| 亚洲一区二区三区免费视频|