99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲综合丝袜美腿| 亚洲综合免费观看高清完整版在线| 奇米四色…亚洲| 久久精品人人做人人爽97 | 制服丝袜亚洲精品中文字幕| 精品亚洲aⅴ乱码一区二区三区| 日韩毛片精品高清免费| 久久综合久久鬼色| 欧美人与z0zoxxxx视频| 91久久精品一区二区三区| 国产精品一区专区| 三级久久三级久久久| 亚洲亚洲精品在线观看| 综合在线观看色| 国产欧美日本一区视频| 久久久久久久久久美女| 91麻豆精品国产自产在线 | 欧美久久一区二区| 色婷婷亚洲精品| 日本成人在线网站| 亚洲国产精品久久久久秋霞影院| 国产精品毛片高清在线完整版| 国产午夜亚洲精品午夜鲁丝片| 91精品国产综合久久蜜臀| 欧洲精品一区二区| 欧美三区在线视频| 欧美亚洲综合在线| 日本欧美大码aⅴ在线播放| 国产日韩欧美精品综合| 99综合影院在线| 亚洲美女屁股眼交3| 国产精品一区二区你懂的| 26uuu成人网一区二区三区| 激情文学综合网| 欧美激情在线看| 337p亚洲精品色噜噜狠狠| 国产欧美日韩不卡免费| 日韩免费福利电影在线观看| 制服丝袜av成人在线看| 日韩欧美精品在线| 91精品国产一区二区三区香蕉| 欧美日韩视频第一区| 欧美一卡二卡在线观看| 欧美一二三在线| 欧美一区二区女人| 欧美成人性战久久| 欧美精品一区二区三区一线天视频| 88在线观看91蜜桃国自产| 欧美日韩免费电影| 欧美一区二区三区系列电影| 日韩欧美不卡在线观看视频| xvideos.蜜桃一区二区| 久久精品这里都是精品| 国产精品进线69影院| 国产精品久久久久久久久免费丝袜| 国产亚洲午夜高清国产拍精品| 国产精品久久久久久久久晋中| 亚洲日本青草视频在线怡红院| 精品福利一二区| 久久久99久久精品欧美| 久久嫩草精品久久久久| 久久久久久久性| 亚洲摸摸操操av| 五月天婷婷综合| 欧美少妇bbb| 精品美女被调教视频大全网站| 欧美国产视频在线| 亚洲欧洲美洲综合色网| 日韩成人精品在线| 国产精品一二二区| 97国产一区二区| 国产精品女同互慰在线看| 一区二区三区影院| 日本aⅴ亚洲精品中文乱码| 国产成人免费在线视频| 欧美日韩精品欧美日韩精品一| 色诱视频网站一区| 91老司机福利 在线| 91看片淫黄大片一级| 日本韩国精品在线| 97超碰欧美中文字幕| 91网站最新网址| 欧美亚洲高清一区| 91在线一区二区三区| 欧美日韩免费一区二区三区视频| 蜜桃一区二区三区在线| 奇米一区二区三区av| 国产精品一级片在线观看| 久久99精品久久久久久动态图| 91视频精品在这里| 欧美一二三区在线观看| 亚洲一区二区av在线| 国产99久久久国产精品免费看 | 欧美tickle裸体挠脚心vk| 亚洲色图色小说| 九色综合狠狠综合久久| 懂色中文一区二区在线播放| 日韩一卡二卡三卡国产欧美| 国产精品嫩草影院av蜜臀| 亚洲国产成人精品视频| www.一区二区| 欧美成人高清电影在线| 日韩黄色免费网站| 91色.com| 国产女人18水真多18精品一级做| 中文字幕一区二区在线观看 | 一区二区三区在线视频观看58 | 国产乱人伦偷精品视频免下载 | 欧美日韩二区三区| 中文字幕成人av| 亚洲激情图片qvod| 成人激情免费网站| 欧美不卡视频一区| 午夜亚洲国产au精品一区二区| 欧美综合欧美视频| 国产精品视频一二三区| 精品一二三四在线| 日韩午夜精品电影| 亚洲h动漫在线| 久久99久久精品| 26uuu精品一区二区三区四区在线| 日韩高清电影一区| 在线视频国产一区| 国产精品福利av| 激情丁香综合五月| 欧美日韩久久不卡| 日韩精品一区二区三区老鸭窝 | av不卡一区二区三区| 欧美视频中文一区二区三区在线观看| 日本一区免费视频| 国产在线国偷精品产拍免费yy| 欧美一卡2卡三卡4卡5免费| 日韩av一区二区在线影视| 777久久久精品| 男人的天堂亚洲一区| 日韩精品一区二区三区视频| 黑人巨大精品欧美一区| 久久婷婷成人综合色| 国产91精品一区二区麻豆网站| 久久精品一区蜜桃臀影院| 国产伦精品一区二区三区视频青涩 | 亚洲成人黄色小说| 91精品国产91久久久久久最新毛片| 日韩av一区二区三区| 欧美一区二区三区男人的天堂| 日韩成人精品在线观看| 精品久久久影院| 国产盗摄女厕一区二区三区| 国产免费成人在线视频| 91欧美一区二区| 丝瓜av网站精品一区二区| 欧美一二三区在线| 国产在线精品免费| 欧美国产禁国产网站cc| 色婷婷精品久久二区二区蜜臂av | 色偷偷成人一区二区三区91| 亚洲成人免费av| 精品伦理精品一区| 成人福利视频网站| 亚洲成人第一页| 久久精品夜夜夜夜久久| 色又黄又爽网站www久久| 蜜桃视频在线观看一区二区| 中文字幕第一区| 欧美日韩一卡二卡三卡 | av网站免费线看精品| 一个色综合网站| 亚洲区小说区图片区qvod| 国产精品久久看| 久久超碰97中文字幕| 日韩在线一区二区三区| 天堂va蜜桃一区二区三区漫画版| 亚洲免费三区一区二区| 亚洲日本va午夜在线影院| 国产精品成人免费在线| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧洲性图库| 欧日韩精品视频| 国产一区二区在线影院| 亚洲欧美日韩在线| 日韩欧美亚洲一区二区| 99久久婷婷国产综合精品| 欧美aaaaaa午夜精品| 最新国产成人在线观看| 精品久久一区二区| 在线欧美日韩国产| 国产综合久久久久久鬼色| 一区二区高清免费观看影视大全| 日韩三级.com| 99国产精品久久久久久久久久| 亚洲电影第三页| 中文字幕一区二区5566日韩| 日韩精品一区二区三区在线播放| 成人永久看片免费视频天堂| 奇米888四色在线精品| 国产香蕉久久精品综合网| 日韩一二三区不卡| 色久综合一二码| 国产又黄又大久久| 午夜精品久久久久久久99水蜜桃|