99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国内精品久久久久影院一蜜桃| 欧美日韩在线播放一区| 国产寡妇亲子伦一区二区| 91女厕偷拍女厕偷拍高清| 亚洲图片另类小说| 国产99久久久国产精品| 欧美性色黄大片| 亚洲精品在线观看视频| 日本午夜精品一区二区三区电影| 日本韩国欧美一区| 亚洲日本va午夜在线电影| 成人的网站免费观看| 久久精品亚洲乱码伦伦中文| 极品瑜伽女神91| 337p粉嫩大胆色噜噜噜噜亚洲 | 懂色av中文一区二区三区| 精品少妇一区二区三区在线播放| 免费人成在线不卡| 日韩一区二区三区免费观看| 毛片av一区二区| 久久久亚洲精品石原莉奈| 国产精品一区二区久久不卡| 精品国免费一区二区三区| 久久蜜桃av一区精品变态类天堂 | 欧美一区二区三区的| 国产a区久久久| 色婷婷久久久久swag精品| 欧美图区在线视频| 亚洲午夜国产一区99re久久| 色婷婷国产精品| 日韩久久久久久| 国产美女主播视频一区| 国产拍揄自揄精品视频麻豆| 国产+成+人+亚洲欧洲自线| 亚洲欧美区自拍先锋| 久久久不卡网国产精品二区| 亚洲欧美另类综合偷拍| 国产激情视频一区二区三区欧美| 成熟亚洲日本毛茸茸凸凹| 91女神在线视频| 日韩一区二区中文字幕| 亚洲国产综合色| 91久久线看在观草草青青| 日本一区二区在线不卡| 国产麻豆一精品一av一免费| 欧美人xxxx| 精品一区二区三区视频| 久久九九久久九九| 日韩中文字幕一区二区三区| 国产成人av福利| 一本色道久久加勒比精品| 欧美巨大另类极品videosbest| 91在线视频18| 亚洲一区在线观看免费 | 中文字幕在线一区免费| 欧美午夜理伦三级在线观看| 狠狠网亚洲精品| 依依成人综合视频| 久久精品夜色噜噜亚洲a∨| 欧美精品v国产精品v日韩精品| 国产成人99久久亚洲综合精品| 亚洲一区二区三区视频在线 | 91精选在线观看| 成人免费黄色大片| 日本欧美肥老太交大片| 一区二区免费在线| 国产精品久久久久久福利一牛影视| 国产欧美精品在线观看| 欧美xxx久久| 欧美国产日本韩| 国产女人水真多18毛片18精品视频 | 欧美日韩午夜在线视频| 欧美色图12p| 一本色道久久综合亚洲91 | 国产伦精品一区二区三区在线观看 | 亚洲黄网站在线观看| 欧美激情一区在线观看| 久久奇米777| 日韩欧美一级片| 久久免费看少妇高潮| 91麻豆精品国产自产在线观看一区| 欧美sm极限捆绑bd| 日韩一区国产二区欧美三区| 日韩精品久久久久久| 欧美一区二区三区在线看| 精品日韩欧美在线| 欧美电视剧在线看免费| 欧美视频一区二区在线观看| www.日韩大片| 国产剧情一区二区三区| 国产一区中文字幕| 成人毛片视频在线观看| 国产一区二区精品久久99| 狠狠狠色丁香婷婷综合久久五月| 欧美一区二区在线视频| 欧美影片第一页| 欧美久久高跟鞋激| 日韩欧美一区二区三区在线| 欧美大胆人体bbbb| 久久久久久毛片| 中文字幕日韩欧美一区二区三区| 亚洲毛片av在线| 首页欧美精品中文字幕| 久久成人免费电影| 成人国产精品免费观看视频| 在线一区二区视频| 日韩女优av电影| 中文字幕第一页久久| 亚洲国产cao| 精品一区在线看| 99精品久久久久久| 3d动漫精品啪啪一区二区竹菊| 日韩欧美国产不卡| 亚洲国产精品黑人久久久| 亚洲一区二区免费视频| 亚洲黄色片在线观看| 亚洲色图制服诱惑| 国产91丝袜在线18| 在线视频欧美精品| 欧美性做爰猛烈叫床潮| 国产成人在线观看免费网站| 一本大道综合伊人精品热热| 日韩精品在线网站| 亚洲精品伦理在线| 国产精品一区二区不卡| av在线免费不卡| 欧美性色黄大片手机版| 欧美日韩国产综合一区二区三区| 精品国产乱码久久久久久1区2区| 一区二区三区美女视频| 免费成人深夜小野草| 成人黄色一级视频| 日韩精品一区在线| 午夜精品免费在线| 91浏览器打开| 中文字幕免费不卡| 久久激情五月激情| 欧美精品日韩精品| 亚洲午夜视频在线观看| 91免费版pro下载短视频| 国产欧美日韩另类视频免费观看| 美女视频黄久久| 在线观看91精品国产麻豆| 一区二区成人在线视频| 不卡的电视剧免费网站有什么| 欧美sm极限捆绑bd| 毛片av一区二区| 国产精品一区二区不卡| 91精品国产欧美一区二区成人| 亚洲欧美在线观看| 免费黄网站欧美| 日韩免费观看高清完整版 | 国产亚洲制服色| 亚洲午夜精品网| 亚洲综合男人的天堂| 欧美不卡123| 欧美日韩精品电影| 91丨九色丨尤物| 亚洲自拍偷拍图区| 国产精品久久久爽爽爽麻豆色哟哟 | 欧美日韩国产123区| 99视频一区二区三区| 精品一区二区三区的国产在线播放| 九一久久久久久| 日韩va亚洲va欧美va久久| 一区二区三区视频在线观看| 欧美一级二级三级乱码| 色88888久久久久久影院按摩| 欧美一级夜夜爽| 91色porny在线视频| 日本美女一区二区三区视频| 欧美成人video| 国产高清视频一区| 国产99久久久精品| 成人黄色电影在线 | 综合色天天鬼久久鬼色| 欧美日韩在线三级| 国产成人亚洲精品青草天美| 天使萌一区二区三区免费观看| 亚洲国产精品成人综合| 91精品国产综合久久久久久久 | 日韩不卡在线观看日韩不卡视频| 337p粉嫩大胆噜噜噜噜噜91av| 欧美精品久久久久久久多人混战| 成人a区在线观看| 国产乱人伦精品一区二区在线观看| 亚洲国产精品久久不卡毛片| 中文字幕一区二区视频| 国产欧美一区二区精品性色超碰| 91精品国产黑色紧身裤美女| 欧洲国产伦久久久久久久| 不卡电影一区二区三区| 成人精品在线视频观看| 国产很黄免费观看久久| 黑人精品欧美一区二区蜜桃| 日韩制服丝袜先锋影音| 日本美女一区二区三区| 久热成人在线视频| 久久99这里只有精品| 极品尤物av久久免费看|