99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DDA3020代做、代寫Python語言編程
DDA3020代做、代寫Python語言編程

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DDA3020 Homework 1
Due date: Oct 14, 2024
Instructions
• The deadline is 23:59, Oct 14, 2024.
• The weight of this assignment in the ffnal grade is 20%.
• Electronic submission: Turn in solutions electronically via Blackboard. Be sure to submit
 your homework as one pdf ffle plus two python scripts. Please name your solution ffles as
”DDA3020HW1 studentID name.pdf”, ”HW1 yourID Q1.ipynb” and ”HW1 yourID Q2.ipynb”.
(.py ffles also acceptable)
• Note that late submissions will result in discounted scores: 0-24 hours → 80%, 24-120 hours
→ 50%, 120 or more hours → 0%.
• Answer the questions in English. Otherwise, you’ll lose half of the points.
• Collaboration policy: You need to solve all questions independently and collaboration between
students is NOT allowed.
1 Written Problems (50 points)
1.1. (Learning of Linear Regression, 25 points) Suppose we have training data:
{(x1, y1),(x2, y2), . . . ,(xN , yN )},
where xi ∈ R
d and yi ∈ R
k
, i = 1, 2, . . . , N.
i) (9 pts) Find the closed-form solution of the following problem.
min
W,b
X
N
i=1
∥yi − Wxi − b∥
2
2
,
ii) (8 pts) Show how to use gradient descent to solve the problem. (Please state at least one
possible Stopping Criterion)
1DDA3020 Machine Learning Autumn 2024, CUHKSZ
iii) (8 pts) We further suppose that x1, x2, . . . , xN are drawn from N (µ, σ
2
). Show that the
maximum likelihood estimation (MLE) of σ
2
is σˆ
2
MLE =
1
N
PN
n=1
(xn − µMLE)
2
.
1.2. (Support Vector Machine, 25 points) Given two positive samples x1 = (3, 3)
T
, x2 =
(4, 3)
T
, and one negative sample x3 = (1, 1)
T
, ffnd the maximum-margin separating hyperplane and
support vectors.
Solution steps:
i) Formulating the Optimization Problem (5 pts)
ii) Constructing the Lagrangian (5 pts)
iii) Using KKT Conditions (5 pts)
iv) Solving the Equations (5 pts)
v) Determining the Hyperplane Equation and Support Vectors (5 pts)
2 Programming (50 points)
2.1. (Linear regression, 25 points) We have a labeled dataset D = {(x1, y1),(x2, y2),
· · · ,(xn, yn)}, with xi ∈ R
d being the d-dimensional feature vector of the i-th sample, and yi ∈ R
being real valued target (label).
A linear regression model is give by
fw0,...,wd
(x) = w0 + w1x1 + w2x2 + · · · + wdxd, (1)
where w0 is often called bias and w1, w2, . . . , wd are often called coefffcients.
Now, we want to utilize the dataset D to build a linear model based on linear regression.
We provide a training set Dtrain that includes 2024 labeled samples with 11 features (See linear
 regression train.txt) to fft model, and a test set Dtest that includes 10 unlabeled samples with
11 features (see linear regression test.txt) to estimate model.
1. Using the LinearRegression class from Sklearn package to get the bias w0 and the coefffcients
w1, w2, . . . , w11, then computing the yˆ = f(x) of test set Dtest by the model trained well. (Put
the estimation of w0, w1, . . . , w11 and these yˆ in your answers.)
2. Implementing the linear regression by yourself to obtain the bias w0 and the coefffcients
w1, w2, . . . , w11, then computing the yˆ = f(x) of test set Dtest. (Put the estimation of
w0, w1, . . . , w11 and these yˆ in your answers. It is allowed to compute the inverse of a matrix
using the existing python package.)
2DDA3020 Machine Learning Autumn 2024, CUHKSZ
(Hint: Note that for linear regression train.txt, there are 2024 rows with 12 columns where the
ffrst 11 columns are features x and the last column is target y and linear regression test.txt
only contains 10 rows with 11 columns (features). Both of two tasks require the submission of
code and results. Put all the code in a “HW1 yourID Q1.ipynb” Jupyter notebook. ffle.(”.py”
ffle is also acceptable))
2.2. (SVM, 25 points)
Task Description You are asked to write a program that constructs support vector machine
models with different kernel functions and slack variables.
Datasets You are provided with the iris dataset. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. There are four features: 1. sepal length in cm;
2. sepal width in cm; 3. petal length in cm; 4. petal width in cm. You need to use these features
to classify each iris plant as one of the three possible types.
What you should do You should use the SVM function from python sklearn package, which
provides various forms of SVM functions. For multiclass SVM you should use the one vs rest
strategy. You are recommended to use sklearn.svm.svc() function. You can use numpy for vector
manipulation. For technical report, you should report the results required as mentioned below (e.g.
training error, testing error, and so on).
1. (2 points) Split training set and test set. Split the data into a training set and a test set.
The training set should contain 70% of the samples, while the test set should include 30%.
The number of samples from each category in both the training and test sets should reffect
this 70-30 split; for each category, the ffrst 70% of the samples will form the training set, and
the remaining 30% will form the test set. Ensure that the split maintains the original order
of the data. You should report instance ids in the split training set and test set. The output
format is as follows:
Q2.2.1 Split training set and test set:
Training set: xx
Test set: xx
You should ffll up xx in the template. You should write ids for each set in the same line with
comma separated, e.g. Training set:[1, 4, 19].
2. (10 points) Calculation using Standard SVM Model (Linear Kernel). Employ the
standard SVM model with a linear kernel. Train your SVM on the split training dataset and
3DDA3020 Machine Learning Autumn 2024, CUHKSZ
validate it on the testing dataset. Calculate the classiffcation error for both the training and
testing datasets, output the weight vector w, the bias b, and the indices of support vectors
(start with 0). Note that the scikit-learn package does not offer a function with hard margin,
so we will simulate this using C = 1e5. You should ffrst print out the total training error
and testing error, where the error is
wrong prediction
number of data
. Then, print out the results for each class
separately (note that you should calculate errors for each class separately in this part). You
should also mention in your report which classes are linear separable with SVM without slack.
The output format is as follows:
Q2.2.2 Calculation using Standard SVM Model:
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
Linear separable classes: xx
If we view the one vs all strategy as combining the multiple different SVM, each one being
a separating hyperplane for one class and the rest of the points, then the w, b and support
vector indices for that class is the corresponding parameters for the SVM separating this class
and the rest of the points. If a variable is of vector form, say a =


1
2
3
?**4;
?**5;?**5;?**6;, then you should write
each entry in the same line with comma separated e.g. [1,2,3].
3. (6 points) Calculation using SVM with Slack Variables (Linear Kernel). For each
C = 0.25 × t, where t = 1, 2, . . . , 4, train your SVM on the training dataset, and subsequently
validate it on the testing dataset. Calculate the classiffcation error for both the training and
testing datasets, the weight vector w, the bias b, and the indices of support vectors, and the
slack variable ζ of support vectors (you may compute it as max(0, 1 − y · f(X)). The output
format is as follows:
Q2.2.3 Calculation using SVM with Slack Variables (C = 0.25 × t, where t = 1, . . . , 4):
4DDA3020 Machine Learning Autumn 2024, CUHKSZ
-------------------------------------------
C=0.25,
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
-------------------------------------------
C=0.5,
<... results for (C=0.5) ...>
-------------------------------------------
C=0.75,
<... results for (C=0.75) ...>
-------------------------------------------
C=1,
<... results for (C=1) ...>
4. (7 points) Calculation using SVM with Kernel Functions. Conduct experiments with
different kernel functions for SVM without slack variable. Calculate the classiffcation error
for both the training and testing datasets, and the indices of support vectors for each kernel
type:
(a) 2nd-order Polynomial Kernel
(b) 3nd-order Polynomial Kernel
(c) Radial Basis Function Kernel with σ = 1
(d) Sigmoidal Kernel with σ = 1
The output format is as follows:
5DDA3020 Machine Learning Autumn 2024, CUHKSZ
Q2.2.4 Calculation using SVM with Kernel Functions:
-------------------------------------------
(a) 2nd-order Polynomial Kernel,
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
-------------------------------------------
(b) 3nd-order Polynomial Kernel,
<... results for (b) ...>
-------------------------------------------
(c) Radial Basis Function Kernel with σ = 1,
<... results for (c) ...>
-------------------------------------------
(d) Sigmoidal Kernel with σ = 1,
<... results for (d) ...>
Submission Submit your executable code in a “HW1 yourID Q2.ipynb” Jupyter notebook(”.py”
file is also acceptable). Indicate the corresponding question number in the comment for each cell,
and ensure that your code can logically produce the required results for each question in the required
format. Please note that you need to write clear comments and use appropriate function/variable
names. Excessively unreadable code may result in point deductions.

6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做CS 259、Java/c++設計程序代寫
  • 下一篇:代做MSE 280、代寫Matlab程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                视频在线观看一区二区三区| 91视频www| 日韩午夜三级在线| 91精品国产麻豆国产自产在线| 7777精品伊人久久久大香线蕉 | 日韩视频一区二区| 老汉av免费一区二区三区| 豆国产96在线|亚洲| 欧美猛男男办公室激情| 欧美一区二区三区视频| 日本少妇一区二区| 欧美视频在线观看一区二区| 久久久不卡网国产精品一区| 亚洲无线码一区二区三区| 北条麻妃国产九九精品视频| 91精品在线麻豆| 久久www免费人成看片高清| 国产精品麻豆久久久| 国产高清成人在线| 日韩午夜在线观看视频| 成人精品视频.| 国产欧美精品日韩区二区麻豆天美| 婷婷久久综合九色综合绿巨人| 色婷婷av一区二区三区软件| 国产精品久久免费看| 精品午夜久久福利影院| 日韩一区二区免费电影| 国产a久久麻豆| 日韩精品欧美精品| 国产精品拍天天在线| 3d成人动漫网站| 懂色av中文一区二区三区| 日韩有码一区二区三区| 亚洲色图制服诱惑 | 欧美午夜视频网站| 国产精品伦理一区二区| 日本精品一区二区三区四区的功能| 欧美二区三区91| 亚洲欧美另类小说| 国产91露脸合集magnet| 亚洲电影中文字幕在线观看| 国产精品亲子伦对白| 久久综合久久久久88| 国产在线精品免费av| 日韩美女在线视频| 精品在线亚洲视频| 亚洲一区在线观看视频| 欧美日韩成人综合天天影院| 国产乱码精品1区2区3区| 久久这里只有精品首页| 在线观看亚洲成人| 蜜臀av一区二区在线免费观看| 9191久久久久久久久久久| 成人免费观看男女羞羞视频| 国产麻豆精品视频| 蜜桃av一区二区在线观看| 视频一区二区三区入口| 午夜精品一区二区三区三上悠亚| 亚洲一区二区在线观看视频| 亚洲一区二区三区影院| 亚洲动漫第一页| 日韩影院在线观看| 久久99精品久久久久| 国内精品伊人久久久久影院对白| 国产欧美日韩另类视频免费观看| 91精品国产欧美一区二区18| 欧美色视频在线观看| 丝瓜av网站精品一区二区| 一区二区国产盗摄色噜噜| 精品剧情v国产在线观看在线| 成人免费黄色大片| 白白色 亚洲乱淫| 9i看片成人免费高清| 91免费看片在线观看| 在线精品亚洲一区二区不卡| 欧美福利电影网| 日韩精品中文字幕在线不卡尤物| 日韩精品专区在线影院重磅| 国产亚洲精品7777| 日韩美女一区二区三区四区| 欧美成人猛片aaaaaaa| 国产亚洲一区二区三区四区| 国产精品美女一区二区| 亚洲综合激情网| 麻豆91在线看| 99精品在线观看视频| 麻豆精品国产传媒mv男同| 免费观看久久久4p| 天堂成人国产精品一区| 蜜臀91精品一区二区三区| 国产一区二区在线免费观看| 午夜精品免费在线| 国产精品 欧美精品| 色成年激情久久综合| 欧美人动与zoxxxx乱| 国产亚洲短视频| 亚洲成a人片在线不卡一二三区| 久久精品视频免费| 亚洲人成人一区二区在线观看| 一区二区视频在线| 国产女同性恋一区二区| 中文字幕一区二区日韩精品绯色| 久久午夜国产精品| 亚洲综合激情网| 国产露脸91国语对白| 欧美色涩在线第一页| 久久久一区二区三区| 亚洲午夜日本在线观看| 国产福利视频一区二区三区| 91免费看视频| 中文字幕二三区不卡| 欧美午夜理伦三级在线观看| 久久久国产精品麻豆| 视频一区二区欧美| 色综合久久综合网97色综合| 2欧美一区二区三区在线观看视频| 亚洲五月六月丁香激情| 国产黑丝在线一区二区三区| 欧美福利视频一区| 亚洲午夜久久久久久久久久久| www.在线欧美| 国产精品乱人伦中文| 久久69国产一区二区蜜臀| 在线观看91精品国产麻豆| 亚洲欧美成人一区二区三区| 成人综合婷婷国产精品久久免费| 日韩美一区二区三区| 天堂在线一区二区| 欧美亚洲高清一区| 亚洲欧美在线视频| 成人黄色小视频| 99re这里只有精品首页| 精品欧美乱码久久久久久1区2区| 视频一区视频二区中文字幕| 欧美日韩国产乱码电影| 日韩和欧美一区二区三区| 欧美精品免费视频| 石原莉奈一区二区三区在线观看| 欧美美女直播网站| 麻豆一区二区三区| 国产亚洲精品精华液| heyzo一本久久综合| 亚洲精品视频自拍| 欧美日韩国产另类一区| 乱中年女人伦av一区二区| 久久亚洲春色中文字幕久久久| 国产91高潮流白浆在线麻豆| 国产精品久久久久久久久免费桃花| 成人高清免费观看| 亚洲综合色视频| 日韩女同互慰一区二区| 寂寞少妇一区二区三区| 国产亚洲欧洲一区高清在线观看| 国产成人久久精品77777最新版本| 国产三级欧美三级日产三级99| 成人蜜臀av电影| 午夜影视日本亚洲欧洲精品| 日韩欧美色综合| 99国产精品久久久久久久久久| 香蕉影视欧美成人| 久久免费电影网| 99精品在线观看视频| 日韩av一区二区在线影视| 精品国产亚洲一区二区三区在线观看| 日韩一区日韩二区| 欧美视频一区二区三区四区| 首页亚洲欧美制服丝腿| 久久久久国产精品麻豆ai换脸| 99久久99久久久精品齐齐| 日韩和欧美的一区| 国产精品视频麻豆| 欧美疯狂做受xxxx富婆| 国产激情视频一区二区三区欧美 | 午夜精品视频一区| 国产欧美精品在线观看| 欧美日韩一二区| 懂色av一区二区三区免费观看| 日韩中文字幕1| 自拍偷在线精品自拍偷无码专区| 在线电影院国产精品| 色一情一乱一乱一91av| 国产福利电影一区二区三区| 亚洲三级在线免费观看| 成人免费视频免费观看| 天天综合网天天综合色| 亚洲高清视频的网址| 亚洲免费色视频| 中文字幕在线免费不卡| 国产日韩精品一区| 久久久久久久久久久99999| 欧美一区二区视频网站| 欧美挠脚心视频网站| 欧美视频一二三区| 欧美视频在线一区二区三区| 在线观看一区日韩| 欧美无砖砖区免费| 欧洲在线/亚洲| 欧美日韩视频在线第一区| 色美美综合视频| 在线免费av一区|