99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩一区精品视频| 精品一区二区日韩| 国产一区二区在线观看视频| 欧美一区二区三区免费在线看| 国产精品久久久久久一区二区三区| 欧美日韩一区在线观看| 久久国产三级精品| 3751色影院一区二区三区| 久久99精品国产.久久久久| 久久免费视频色| 91视频在线观看免费| 亚洲影视在线播放| 精品av综合导航| 91色九色蝌蚪| 久久国产精品第一页| 国产精品视频看| 欧美怡红院视频| 国产在线精品国自产拍免费| 国产精品毛片a∨一区二区三区| 在线精品亚洲一区二区不卡| 韩国精品一区二区| 亚洲一区二区四区蜜桃| 精品国产免费久久| 欧美性高清videossexo| 国产剧情在线观看一区二区| 亚洲宅男天堂在线观看无病毒| 精品奇米国产一区二区三区| 91麻豆国产福利精品| 久久69国产一区二区蜜臀| 亚洲欧美国产毛片在线| 精品日本一线二线三线不卡| 欧亚洲嫩模精品一区三区| 国产一区二区不卡在线| 亚洲18色成人| 亚洲欧美日韩国产另类专区| 久久这里只有精品视频网| 欧美网站一区二区| 97se亚洲国产综合自在线| 狠狠色丁香婷婷综合久久片| 亚洲不卡av一区二区三区| ㊣最新国产の精品bt伙计久久| 精品久久久久久久久久久久久久久久久| 色欧美乱欧美15图片| 国产成人免费视频一区| 蜜桃av一区二区| 麻豆国产91在线播放| 亚洲成人免费视| 亚洲国产精品久久艾草纯爱| 国产精品第四页| 国产欧美日韩视频在线观看| 精品久久久久久亚洲综合网| 91精品午夜视频| 91.com在线观看| 欧美日韩成人综合天天影院| 欧美在线高清视频| 99久久免费精品高清特色大片| 国产精品99久久久久久久女警| 久久99久久久久| 狠狠色2019综合网| 国产成人激情av| 丰满少妇在线播放bd日韩电影| 国产美女视频一区| 国产东北露脸精品视频| 国产成人亚洲精品青草天美| 国产91在线|亚洲| 成人精品视频一区| 91亚洲国产成人精品一区二三| 91在线无精精品入口| 欧洲一区二区三区免费视频| 欧美午夜不卡在线观看免费| 欧美一区中文字幕| 精品国产精品网麻豆系列 | 性欧美疯狂xxxxbbbb| 国产裸体歌舞团一区二区| 国产日韩精品一区二区三区| 国产三级欧美三级日产三级99| 中文字幕av一区二区三区| 亚洲成人午夜影院| 91亚洲精品久久久蜜桃网站| 日韩一级片网址| 国产成人精品三级| 91久久精品国产91性色tv| 日韩精彩视频在线观看| 9l国产精品久久久久麻豆| 欧美另类久久久品| 国模大尺度一区二区三区| 国产亚洲一区二区三区四区 | 五月激情综合婷婷| 色八戒一区二区三区| 国产成人免费在线观看| 337p粉嫩大胆噜噜噜噜噜91av| 亚洲一区二区黄色| 欧美日韩亚洲另类| 综合激情成人伊人| 欧美不卡一区二区三区四区| 蜜臀av性久久久久av蜜臀妖精 | 亚洲国产色一区| 国产91精品久久久久久久网曝门 | 国产亚洲精品aa| 极品尤物av久久免费看| 男女男精品视频网| 久久亚洲精华国产精华液| 欧美一级一级性生活免费录像| 亚洲电影在线免费观看| 亚洲韩国精品一区| 欧美一区二区免费观在线| 欧美日韩视频在线第一区| 亚洲一区二区中文在线| 亚洲影院免费观看| 亚洲制服丝袜一区| 精品国产精品一区二区夜夜嗨| www久久精品| 成人高清伦理免费影院在线观看| 国产原创一区二区三区| 国产一区不卡精品| 伊人色综合久久天天人手人婷| 最新成人av在线| 91精品一区二区三区久久久久久 | 99视频一区二区| 成人性视频网站| 亚洲欧洲色图综合| 亚洲黄色在线视频| 91免费国产视频网站| 亚洲地区一二三色| 香蕉成人啪国产精品视频综合网| 久久久国产精品麻豆| 精品免费国产一区二区三区四区| 欧美mv和日韩mv国产网站| 久久久久国产成人精品亚洲午夜| 国产精品成人一区二区三区夜夜夜| 国产成人精品aa毛片| 不卡av在线免费观看| 日韩和欧美一区二区| 日韩精品亚洲一区| 欧美v国产在线一区二区三区| 东方欧美亚洲色图在线| 91丨porny丨国产入口| 精品少妇一区二区三区日产乱码| 91视频www| 久久网这里都是精品| 亚洲线精品一区二区三区八戒| 国产91精品在线观看| 日韩视频永久免费| 久久午夜电影网| 天天做天天摸天天爽国产一区| 亚洲女厕所小便bbb| 另类调教123区| 91国内精品野花午夜精品| 欧美极品xxx| 日本高清无吗v一区| 国产亚洲人成网站| 亚洲一区在线视频| 精品一区精品二区高清| 丝袜美腿亚洲一区二区图片| 欧美日韩一区二区三区在线 | 国产一区二区三区久久久| 91在线高清观看| 久久精品视频一区二区三区| 欧美国产欧美综合| 亚洲国产欧美日韩另类综合| 欧美激情在线免费观看| 一区二区三区在线免费视频| 国产一区二区不卡| 日韩亚洲欧美成人一区| 97精品久久久午夜一区二区三区 | 欧美aⅴ一区二区三区视频| 精品在线播放午夜| 亚洲成人资源网| 日韩一区欧美一区| 国产不卡视频一区二区三区| 麻豆视频一区二区| 欧美精品自拍偷拍| 一区二区在线观看视频| 最新国产の精品合集bt伙计| 精品国产一区a| 日韩免费看的电影| 91精品麻豆日日躁夜夜躁| 亚洲精品国产精品乱码不99| 国产精品夜夜嗨| 欧美一区二区视频观看视频| 国产精品人妖ts系列视频| 国产午夜精品一区二区三区四区| 91精品国产乱码| 亚洲精品久久嫩草网站秘色| 色综合久久中文字幕| 国产精品一二三四五| 国产日产精品一区| 国产午夜精品一区二区三区四区| 精品国产91亚洲一区二区三区婷婷 | 欧美丝袜第三区| 91精品国产综合久久香蕉的特点| 成人一级黄色片| 顶级嫩模精品视频在线看| 麻豆高清免费国产一区| 精品1区2区在线观看| 日本网站在线观看一区二区三区| 欧美日韩一区三区| 亚洲成人精品在线观看| 色婷婷国产精品久久包臀| 国产精品久久久久久久久免费樱桃 |