99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲成a人片在线观看中文| 日韩欧美一二三区| 亚洲大片在线观看| 国产精品久久福利| 国产无人区一区二区三区| 日韩午夜电影av| 日韩美女视频一区二区| 蜜臀av一区二区在线免费观看| 亚洲一区在线播放| 中文字幕一区二区三区精华液| 中文字幕免费在线观看视频一区| 国产网红主播福利一区二区| 国产精品污www在线观看| 国产精品人成在线观看免费| 亚洲国产精品av| 国产精品网站在线| 亚洲日本护士毛茸茸| 亚洲一区二区免费视频| 亚洲综合在线视频| 三级一区在线视频先锋 | www.亚洲激情.com| 97精品国产97久久久久久久久久久久 | 午夜欧美2019年伦理| 亚洲成人高清在线| 蜜臀91精品一区二区三区| 麻豆成人av在线| 久久se精品一区精品二区| 国产一区999| 日本精品一区二区三区高清| 色综合久久88色综合天天| 精品视频一区二区三区免费| 日韩一区二区麻豆国产| 久久久久久久av麻豆果冻| 日韩一区在线播放| 日韩国产精品大片| 国产精品亚洲成人| 91美女蜜桃在线| 日韩一区二区免费在线电影| 精品sm捆绑视频| 亚洲日本在线视频观看| 久久精品久久99精品久久| 成人h动漫精品| 欧美美女黄视频| 国产精品电影一区二区三区| 丝袜美腿亚洲一区二区图片| 国产精品一区久久久久| 色综合久久久久综合99| 精品成人免费观看| 亚洲大片在线观看| www.成人网.com| 精品国产免费人成在线观看| 亚洲天堂中文字幕| 久久国产精品99精品国产| 色综合天天综合狠狠| 欧美电影免费观看高清完整版在线| 国产精品传媒视频| 国产在线精品免费| 蜜桃av一区二区三区| 日韩欧美亚洲国产精品字幕久久久| 日韩三级av在线播放| 日韩制服丝袜先锋影音| 国产麻豆精品在线| 久久综合九色综合97_久久久| 欧美日韩中文字幕一区二区| 免费xxxx性欧美18vr| 日本伊人精品一区二区三区观看方式| 久久综合色综合88| 久久精品视频在线看| 久久久久综合网| 午夜精品久久久久影视| 成人午夜免费电影| 精品国产一区久久| 亚洲自拍偷拍麻豆| 91成人免费电影| 91年精品国产| 国产精品传媒在线| 美国av一区二区| 亚洲免费在线视频一区 二区| 3d成人h动漫网站入口| 337p亚洲精品色噜噜| 日韩视频一区在线观看| 国产区在线观看成人精品| 国产日韩欧美亚洲| 亚洲尤物在线视频观看| 日韩不卡一区二区三区 | 国产成人精品三级麻豆| av午夜一区麻豆| 欧美自拍偷拍一区| 日韩欧美不卡在线观看视频| 久久久久久**毛片大全| 国产精品国产自产拍高清av王其| 最新国产成人在线观看| 日韩av中文在线观看| 成年人国产精品| 精品国产免费人成在线观看| 一区二区三区免费网站| 日本免费在线视频不卡一不卡二| 丰满白嫩尤物一区二区| 91精品欧美综合在线观看最新| 久久久不卡网国产精品二区| 国产成人在线影院 | 欧美日韩免费高清一区色橹橹| 亚洲人成亚洲人成在线观看图片| 国产精品456露脸| 国产午夜精品美女毛片视频| 99久久久精品| 国产乱码字幕精品高清av| 一区二区三区久久久| 在线电影院国产精品| 国产麻豆一精品一av一免费| 亚洲综合999| 国产视频一区二区在线观看| 欧美人妖巨大在线| av在线不卡电影| 色猫猫国产区一区二在线视频| 91农村精品一区二区在线| 26uuu亚洲婷婷狠狠天堂| 五月激情六月综合| 成人av资源站| 国产偷国产偷精品高清尤物 | 亚洲高清视频中文字幕| 午夜不卡av免费| 精品亚洲成av人在线观看| 777奇米四色成人影色区| 亚洲国产精品久久人人爱蜜臀| 精品一区免费av| 麻豆国产精品官网| 成人久久久精品乱码一区二区三区| proumb性欧美在线观看| 色综合久久综合网| 国产亲近乱来精品视频| 91精品国产综合久久精品app| 亚洲va欧美va人人爽| 亚洲一区二区中文在线| 国产精品美女久久久久av爽李琼| 精品国产区一区| 午夜视频一区二区| 欧美大片一区二区三区| 91美女片黄在线| 日韩一区二区三区视频| 制服丝袜中文字幕一区| 日韩码欧中文字| 欧美精品一区二| 日韩一区二区免费在线观看| 91视频在线看| 99精品久久免费看蜜臀剧情介绍| 精品亚洲成a人| 久久99久久99小草精品免视看| 亚洲精品中文在线影院| 中文字幕精品一区| 国产午夜精品福利| 久久久亚洲高清| 欧美电影免费提供在线观看| 欧美一区二区日韩一区二区| 色哟哟在线观看一区二区三区| 成人性生交大片免费看中文网站| 日韩不卡免费视频| 九九**精品视频免费播放| 寂寞少妇一区二区三区| 喷水一区二区三区| 久久成人麻豆午夜电影| 免费观看在线综合色| 国产一区二区调教| 91在线观看地址| 欧美日韩免费一区二区三区| 777午夜精品免费视频| 这里只有精品99re| 国产精品毛片a∨一区二区三区| 久久无码av三级| 国产精品视频观看| 成人综合在线视频| 日本91福利区| 欧美影视一区在线| 一区二区三区在线免费播放| 国内久久精品视频| 91精品国产一区二区三区| 天天av天天翘天天综合网| 成人在线综合网| 国产欧美精品日韩区二区麻豆天美| 蜜桃精品视频在线观看| 精品成人在线观看| 国产一区二区三区美女| 日韩三级电影网址| 国产精品一区二区x88av| 久久久久久黄色| 色吧成人激情小说| 亚洲国产精品一区二区www在线| 日韩国产精品久久久久久亚洲| 麻豆精品在线播放| 日韩三级精品电影久久久 | 91久久精品一区二区三| 26uuu亚洲综合色| 亚洲国产成人91porn| 欧洲亚洲精品在线| 亚洲天堂2014| www.日韩精品| 亚洲精品日日夜夜| 日韩午夜激情视频| 国产剧情在线观看一区二区| 91成人网在线|