99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫 MSE 609、代做 Java,C++設計程序
代寫 MSE 609、代做 Java,C++設計程序

時間:2024-11-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Instructions:
MSE 609 Quantitative Data Analysis Midterm 3
1. Prepare your answers using Jupyter Notebook or R Markdown, and submit as a PDF or HTML document. Ensure your submission is clear, organized, and well-formatted.
2. Use complete sentences when explaining, commenting, or discussing. Provide thorough answers within the context of the problem for full credit.
3. Show all work and reasoning in your submission. Your grade will depend on the clarity, detail, and correctness of your answers.
4. The exam is open book and open notes. You may use textbooks, course notes, and approved coding tools (e.g., Jupyter Notebook or R Studio). However, using generative AI tools (e.g., large language models) is not permitted.
5. Total points = 100.
6. The exam duration is 1 week. Submit your completed exam by Thursday, November 14, at 11:59 PM. Late submissions will not be accepted.
7. Upload your submission to Crowdmark in PDF or HTML format.
Good Luck!
Problem 1 2 3 Total Max 42 40 18 100
   Points
 1

1. (42 points total) The data file question1.csv contains information about the economies of 366 metropolitan areas (MSAs) in the United States for the year 2006. The dataset includes variables such as the population, the total value of all goods and services produced for sale in the city that year per person (“per capita gross metropolitan product”, pcgmp), and the share of economic output coming from four selected industries.
a. (1 points) Load the data file and confirm that it contains 366 rows and 7 columns. Explain why there are seven columns when only six variables are described in the dataset.
b. (1 points) Compute summary statistics for the six numerical columns.
c. (4 points) Create univariate exploratory data analysis (EDA) plots for population and per capita GMP. Use histograms and boxplots, and describe the distributions of these variables.
d. (4 points) Generate a bivariate EDA plot showing per capita GMP as a function of population. Describe the relationship observed in the plot.
e. (3 points) Using only basic functions like mean, var, cov, sum, and arithmetic operations, cal- culate the slope and intercept of the least-squares regression line for predicting per capita GMP based on population.
f. (3 points) Compare the slope and intercept from your calculations to those returned by the lm function in R. Are they the same? Should they be?
g. (3 points) Add both regression lines to the bivariate EDA plot. Comment on the fit and whether the assumptions of the simple linear regression model appear to hold. Are there areas where the fit seems particularly good or poor?
h. (3 points) Identify Pittsburgh in the dataset. Report its population, per capita GMP, the per capita GMP predicted by your model, and the residual for Pittsburgh.
i. (2 points) Calculate the mean squared error (MSE) of the regression model. That is, compute n1 􏰀ni=1 e2i , where ei = Yi − Yˆi is the residual.
j. (2 points) Discuss whether the residual for Pittsburgh is large, small, or typical relative to the MSE.
2

k. (4 points) Create a plot of residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
l. (3 points) Create a plot of squared residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
m. (3 points) Carefully interpret the estimated slope in the context of the actual variables involved in this problem, rather than using abstract terms like ”predictor variable” or ”X”.
n. (3 points) Using the model, predict the per capita GMP for a city with a population that is 105 higher than Pittsburgh’s.
o. (3 points) Discuss what the model predicts would happen to Pittsburgh’s per capita GMP if a policy intervention were to increase its population by 105 people.
3

2. (40 points total) In real-world data analysis, the process goes beyond simply generating a model and reporting the results. It’s essential to accurately frame the problem, select appropriate analytical methods, interpret the findings, and communicate them in a way that is accessible to an audience that may not be familiar with advanced statistical methods.
Research Scenario: Coral shells, known scientifically as Lithoria crusta, are marine mollusks that inhabit rocky coastal areas. Their meat is highly valued as a delicacy, eaten raw or cooked in many cultures. Estimating the age of Lithoria crusta, however, is difficult since their shell size is influenced not only by age but also by environmental factors, such as food supply. The traditional method for age estimation involves applying stain to a shell sample and counting rings under a microscope. A team of researchers is exploring whether certain physical characteristics of Lithoria crusta, particularly their height, might serve as indicators of age. They propose using a simple linear regression model with normally distributed errors to examine the association between shell height and age, positing that taller shells are generally older. The dataset for this research is available at question2.csv.
a. (3 points) Load the data. Describe the research hypothesis.
b. (4 points) Examine the two variables individually (univariate). Find summary measures for each (mean, variance, range, etc.). Graphically display each and describe your graphs. What is the unit of height?
c. (4 points) Generate a labeled scatterplot of the data. Describe interesting features or trends you observe.
d. (2 points) Fit a simple linear regression to the data, predicting the number of rings using the height of the Lithoria crusta.
e. (4 points) Generate a labeled scatterplot that displays the data and the estimated regression function line (you may add this to the previous scatterplot). Describe the fit of the line.
f. (5 points) Perform diagnostics to assess whether the model assumptions are met. If not, appro- priately transform the height and/or number of rings and re-fit your model. Justify your decisions and re-check your diagnostics.
g. (4 points) Interpret your final parameter estimates in context. Provide 95% confidence intervals for β0 and β1, and interpret these in the context of the problem.
h. (3 points) Determine whether there is a statistically significant relationship between the height
4

and the number of rings (and hence, the age) of Lithoria crusta. Explain your findings in the context of the problem.
i. (4 points) Find the point estimate and the 95% confidence interval for the average number of rings for a Lithoria crusta with a height of 0.128 (in the same unit as other observations of height). Interpret this in the context of the problem.
j. (4 points) We are interested in predicting the number of rings for a Lithoria crusta with a height of 0.1** (in the same unit as other observations of height). Find the predicted value and a 99% prediction interval.
k. (3 points) What are your conclusions? Identify a key finding and discuss its validity. Can you come up with any reasons for what you observe? Do you have any suggestions or recommen- dations for the researchers? How could this analysis be improved? (Provide 6–8 sentences in total.)
5

3. (18 points total) Load the stackloss data:
  data(stackloss)
  names(stackloss)
  help(stackloss)
a. (3 points) Plot the data and describe any noticeable patterns or trends.
b. (5 points) Fit a multiple regression model to predict stack loss from the three other variables. The model is
Y =β0 +β1X1 +β2X2 +β3X3 +ε
where Y is stack loss, X1 is airflow, X2 is water temperature, and X3 is acid concentration. Sum- marize the results of the regression analysis, including the estimated coefficients and their interpre- tation.
c. (3 points) Construct ** percent confidence intervals for the coefficients of the linear regression model. Interpret these intervals in the context of the problem.
d. (3 points) Construct a 99 percent prediction interval for a new observation when Airflow = 58, Water temperature = 20, and Acid = 86. Interpret the prediction interval.
e. (4 points) Test the null hypothesis H0 : β3 = 0. What is the p-value? Based on a significance level of α = 0.10, what is your conclusion? Explain your reasoning.
6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CP3405、代做 Python/C++語言編程
  • 下一篇:代做 CS 6613、代寫 c++,python 程序語言
  • ·代寫 CS 336、代做 java/c++設計程序
  • ·代做CMPT 401、代寫 c++設計程序
  • ·代做CS 259、Java/c++設計程序代寫
  • ·CSCI1120代寫、代做C++設計程序
  • ·COMP30026代做、C/C++設計程序代寫
  • ·MAST30027代做、Java/C++設計程序代寫
  • ·代寫COMP30026、C++設計程序代做
  • ·COS110代做、代寫C/C++設計程序
  • ·DDES9903代做、代寫Python/c++設計程序
  • ·代寫COMP282、代做C++設計程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩国产免费一区二区| 91精品黄色片免费大全| 51久久夜色精品国产麻豆| 午夜精品一区在线观看| 精品久久久久久久久久久久久久久久久| 午夜精品久久久久久久99樱桃| 欧美日韩视频在线第一区| 亚洲3atv精品一区二区三区| 91精品午夜视频| 国产精品一区二区男女羞羞无遮挡| 久久精品夜夜夜夜久久| 一本久久a久久精品亚洲 | 欧美精品视频www在线观看| 日韩1区2区日韩1区2区| 国产视频一区二区在线| 日韩高清在线电影| 中文字幕一区二区在线观看| 丝袜美腿亚洲色图| 亚洲综合区在线| 99re热视频精品| 日韩电影在线免费观看| 欧美激情一区二区在线| 在线免费观看视频一区| 国产一区二区三区国产| 久久精品视频一区二区三区| 亚洲bdsm女犯bdsm网站| 日韩欧美一区二区久久婷婷| 成人app软件下载大全免费| 中文字幕一区二区三区蜜月| 7777精品伊人久久久大香线蕉的 | 欧美日韩亚洲不卡| 国产精品一区二区果冻传媒| 亚洲国产精品久久久久婷婷884 | 精品精品国产高清a毛片牛牛 | 久久国产麻豆精品| 中文字幕中文乱码欧美一区二区 | 91丨porny丨国产| 韩国精品主播一区二区在线观看 | 奇米影视一区二区三区小说| 一区二区三区电影在线播| 久久女同精品一区二区| 欧美日韩和欧美的一区二区| 99久久综合99久久综合网站| 日韩电影免费在线看| 亚洲精品va在线观看| 亚洲色图欧美偷拍| 国产精品三级久久久久三级| 国产欧美一区二区三区在线看蜜臀 | av激情亚洲男人天堂| 首页国产欧美久久| 一区二区三区在线看| 久久色成人在线| 欧美精品电影在线播放| 欧美性大战久久久久久久| 欧美亚一区二区| 成人动漫一区二区在线| 久久精工是国产品牌吗| 亚洲一区二区视频在线观看| 亚洲女同ⅹxx女同tv| 国产精品欧美一级免费| 国产网站一区二区三区| 精品国产伦一区二区三区观看体验 | 亚洲在线观看免费| 亚洲一区二区三区精品在线| 亚洲欧美日韩国产另类专区 | 亚洲欧美综合色| 亚洲日本在线观看| 亚洲蜜臀av乱码久久精品 | 蜜桃视频在线观看一区二区| 一区二区三区日韩精品视频| 亚洲欧美一区二区三区国产精品 | 粉嫩一区二区三区性色av| 一本色道久久综合亚洲91| 欧美电影在哪看比较好| 久久久欧美精品sm网站| 伊人性伊人情综合网| 日韩电影在线免费观看| 成人精品视频一区二区三区 | 亚洲不卡av一区二区三区| 久久99精品久久只有精品| 成人h动漫精品一区二| 欧美日韩久久久久久| 精品国产精品网麻豆系列| 亚洲乱码精品一二三四区日韩在线| 中文欧美字幕免费| 国产精品传媒入口麻豆| 亚洲国产精品自拍| 蜜臀av一区二区在线免费观看 | 国产馆精品极品| 在线视频一区二区免费| 精品久久久影院| 亚洲欧美电影院| 国产自产高清不卡| 欧洲色大大久久| 欧美精品一区二区久久婷婷| 亚洲精品国产品国语在线app| 日韩福利视频导航| 色婷婷精品大视频在线蜜桃视频| 精品国产亚洲在线| 亚洲第四色夜色| 成人a免费在线看| 久久在线免费观看| 日本欧美大码aⅴ在线播放| 成人免费观看av| 久久综合九色综合欧美98 | 国产精品综合av一区二区国产馆| 日本二三区不卡| 久久一日本道色综合| 日韩一区精品字幕| 在线观看国产91| 最新国产精品久久精品| 精品一区二区三区蜜桃| 91精品国产综合久久福利软件| 国产精品白丝在线| 99re这里只有精品首页| 国产欧美一区二区精品忘忧草 | 精彩视频一区二区| 欧美日韩电影一区| 有码一区二区三区| 91免费国产视频网站| 日本一区二区三区久久久久久久久不 | 日韩精品资源二区在线| 亚洲成人激情社区| 欧美日韩一区二区三区在线看 | 国产一区二区伦理片| 精品国产乱码久久久久久图片| 蜜臀av性久久久久蜜臀aⅴ | 欧美另类z0zxhd电影| 天天av天天翘天天综合网| 欧美日韩亚洲不卡| 亚洲第一成人在线| 日韩一区国产二区欧美三区| 亚洲va国产天堂va久久en| 91麻豆精品国产91久久久久| 欧美a一区二区| 日韩欧美中文一区| 国产精品自拍在线| 综合激情成人伊人| 在线看日韩精品电影| 亚洲第一成年网| 精品久久国产字幕高潮| 国产精品一二三四区| 中文字幕日本不卡| 欧美日韩一区二区三区在线看| 日韩电影网1区2区| 久久久精品国产99久久精品芒果| 国产成人高清视频| 亚洲第一久久影院| 国产亚洲欧洲997久久综合 | 国产一区二区三区香蕉| 国产偷v国产偷v亚洲高清| 91久久线看在观草草青青| 男人的j进女人的j一区| 亚洲国产精品传媒在线观看| 在线亚洲高清视频| 久久av中文字幕片| 曰韩精品一区二区| 久久久综合视频| 欧美伊人久久久久久久久影院| 男人的j进女人的j一区| 日韩理论电影院| 欧美大片在线观看一区| 成人白浆超碰人人人人| 日韩av成人高清| 亚洲欧美日韩系列| 久久久久久久久久看片| 欧美性高清videossexo| 国产一区二区0| 亚洲国产cao| 国产亚洲人成网站| 欧美一区二区播放| 日本精品一区二区三区四区的功能| 免费看日韩a级影片| 亚洲免费高清视频在线| 久久久www成人免费毛片麻豆| 欧美性大战xxxxx久久久| 国产精品一区在线观看你懂的| 日韩精品一二三区| 亚洲一区二区三区激情| 亚洲欧美日韩一区二区 | 精品久久一二三区| 欧美性视频一区二区三区| 成人av在线资源网站| 国产中文字幕精品| 日本美女一区二区| 亚洲成人精品一区| 亚洲狠狠爱一区二区三区| 亚洲三级久久久| 国产精品丝袜一区| 久久久精品日韩欧美| 久久综合狠狠综合久久激情| 日韩免费在线观看| 日韩一级完整毛片| 91精品国产一区二区三区蜜臀| 欧美浪妇xxxx高跟鞋交| 欧美精品色一区二区三区| 欧美日韩国产综合久久| 欧美色图激情小说| 欧美区在线观看| 91精品国产色综合久久|