99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫ENG4200、Python/Java程序設(shè)計(jì)代做
代寫ENG4200、Python/Java程序設(shè)計(jì)代做

時(shí)間:2024-11-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩一区二区三区观看| 亚洲欧洲一区二区三区| 欧美三级中文字幕| 亚洲国产精华液网站w| 韩日精品视频一区| 国产午夜精品一区二区三区嫩草| 国内精品久久久久影院一蜜桃| 欧美日韩小视频| 精品在线视频一区| 国产精品国产三级国产普通话99| 日本高清不卡视频| 午夜a成v人精品| 欧美电视剧在线观看完整版| 国产a视频精品免费观看| 国产精品国产自产拍在线| 欧美电影在线免费观看| 成人伦理片在线| 日韩主播视频在线| 国产精品无圣光一区二区| 欧美无乱码久久久免费午夜一区| 精品系列免费在线观看| 亚洲另类在线视频| 国产欧美视频在线观看| 欧美肥胖老妇做爰| 欧美色精品在线视频| 成年人国产精品| 日韩中文欧美在线| 亚洲高清免费一级二级三级| 久久久久久久久久久久久久久99| 91精品国产欧美日韩| 欧美性色黄大片| 99久久伊人久久99| 国产成人亚洲综合a∨猫咪| 天堂av在线一区| 亚洲成av人片在线| 亚洲国产成人91porn| 一区二区在线观看免费| 中文字幕免费不卡| av爱爱亚洲一区| 不卡一区中文字幕| 成人激情文学综合网| 精品国产一二三| 国产日韩欧美一区二区三区乱码 | 日韩成人dvd| 亚洲成人免费电影| 麻豆成人免费电影| 国产一区二区三区在线观看免费视频| 日韩精品一级二级| 韩国三级在线一区| 99综合影院在线| 欧美男生操女生| 精品久久久久99| 国产精品久久久久久久第一福利| 亚洲另类春色校园小说| 日本aⅴ精品一区二区三区| 国产高清亚洲一区| 欧美日韩在线播放一区| wwwwxxxxx欧美| 亚洲视频一区二区在线| 美女在线一区二区| 在线免费观看日本欧美| 久久婷婷色综合| 午夜欧美电影在线观看| 粉嫩在线一区二区三区视频| 一本久久a久久免费精品不卡| 欧美一区二区视频在线观看2020 | 精品成人一区二区| 亚洲国产一区视频| av色综合久久天堂av综合| 欧美变态口味重另类| 亚洲一二三区不卡| 99久久精品费精品国产一区二区| 欧美一级在线视频| 亚洲一区在线观看视频| 成人网在线免费视频| 2欧美一区二区三区在线观看视频| 亚洲成人中文在线| 欧美日韩国产免费| 亚洲精品网站在线观看| 99re视频精品| 亚洲欧美aⅴ...| 色婷婷久久综合| 亚洲综合激情另类小说区| 欧美自拍偷拍午夜视频| 亚洲三级在线免费观看| 色综合久久中文字幕综合网| 亚洲在线免费播放| 精品捆绑美女sm三区| 黄一区二区三区| 国产日韩精品一区二区浪潮av| 久久99精品久久久| 国产精品美女久久久久久2018| 成人丝袜18视频在线观看| 亚洲永久精品大片| 136国产福利精品导航| 91在线视频播放地址| 亚洲人成网站色在线观看| 欧美日韩国产片| 国产精品亚洲专一区二区三区 | 一区二区三区在线免费视频| 欧美主播一区二区三区美女| 久久99精品国产麻豆婷婷| 久久久久国产精品免费免费搜索| 国产精品一区二区男女羞羞无遮挡| 亚洲人亚洲人成电影网站色| 6080国产精品一区二区| av一区二区久久| 韩国理伦片一区二区三区在线播放 | 中文字幕中文乱码欧美一区二区 | 久久久蜜桃精品| 色偷偷久久一区二区三区| 日本不卡免费在线视频| 国产精品久久久久久久久免费丝袜 | 婷婷丁香久久五月婷婷| 欧美国产日本视频| 欧美成人福利视频| 欧美一区二区三区免费观看视频 | 国产精品主播直播| 亚洲v中文字幕| 亚洲福利一二三区| 亚洲精品日韩一| 亚洲裸体在线观看| 一区二区三区小说| 亚洲人成影院在线观看| 亚洲欧美日韩国产一区二区三区| 久久综合久久综合久久综合| 欧美日韩视频在线第一区 | 精品一区二区在线视频| 日韩国产欧美三级| 日本vs亚洲vs韩国一区三区| 毛片不卡一区二区| 国产在线不卡一卡二卡三卡四卡| 国产69精品久久久久毛片| av电影在线不卡| 欧美私人免费视频| 在线观看91精品国产入口| 久久久777精品电影网影网| 精品免费国产一区二区三区四区| 久久久国产综合精品女国产盗摄| 欧美经典一区二区| 视频在线在亚洲| 日韩av电影天堂| 国模冰冰炮一区二区| 99国产精品久久久| 欧美电视剧免费观看| 综合久久久久久| 麻豆免费看一区二区三区| 不卡在线视频中文字幕| 91精品啪在线观看国产60岁| 欧美激情一区二区三区四区| 男女性色大片免费观看一区二区 | 日韩欧美一区二区免费| 中文文精品字幕一区二区| 亚洲美女在线一区| 成人av网址在线| 久久先锋影音av鲁色资源| 亚洲国产精品嫩草影院| 东方aⅴ免费观看久久av| 91精品婷婷国产综合久久竹菊| 亚洲天堂成人网| 国产一区二区三区高清播放| 欧美日本在线一区| 亚洲人吸女人奶水| 日本精品视频一区二区| 精品人在线二区三区| 日本vs亚洲vs韩国一区三区 | 波多野结衣亚洲| 亚洲国产精品99久久久久久久久| 极品尤物av久久免费看| 欧美三区免费完整视频在线观看| 亚洲图片另类小说| 91丝袜美腿高跟国产极品老师| 亚洲视频在线观看一区| 99视频一区二区| 亚洲卡通动漫在线| 欧美日韩国产123区| 亚洲在线视频一区| 精品少妇一区二区三区日产乱码| 午夜精品视频在线观看| 日韩一区二区在线免费观看| 经典三级在线一区| 久久久蜜桃精品| 成人综合激情网| 亚洲第四色夜色| 精品久久免费看| 成人午夜大片免费观看| 亚洲裸体在线观看| 精品久久久网站| 欧美综合久久久| 国产不卡在线播放| 亚洲午夜激情av| 国产亚洲精品7777| 欧美日韩国产bt| 99精品久久只有精品| 午夜激情久久久| 国产精品区一区二区三| 在线不卡一区二区| 国产大片一区二区| 亚洲激情图片一区| 国产精品久久久久一区二区三区|