99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品久久久久久久第一福利 | 欧美无砖专区一中文字| 国产伦精品一区二区三区免费| 亚洲成人精品在线观看| 亚洲日本中文字幕区| 亚洲精品美腿丝袜| 亚洲一区二区黄色| 久久不见久久见免费视频1| 久久精品99国产精品日本| 国内精品伊人久久久久影院对白| 免费高清不卡av| av成人老司机| a在线欧美一区| 色吧成人激情小说| 久久久精品人体av艺术| 亚洲欧洲国产日韩| 蜜臀av在线播放一区二区三区| 国产米奇在线777精品观看| 97精品久久久久中文字幕| 日韩欧美aaaaaa| 日韩不卡手机在线v区| 色婷婷精品大在线视频| 精品国产乱码久久久久久闺蜜 | 欧美精品久久久久久久多人混战| 国产午夜精品一区二区三区嫩草| 五月激情综合婷婷| 欧美日韩国产高清一区二区三区 | 99视频精品免费视频| 久久无码av三级| 九九视频精品免费| 欧美日韩色一区| 欧美国产日韩精品免费观看| 亚洲精品乱码久久久久久日本蜜臀| 久久亚洲影视婷婷| 免费成人在线观看| 欧美丝袜丝交足nylons图片| 国产亚洲精品资源在线26u| 亚洲午夜成aⅴ人片| 91在线一区二区| 国产视频一区在线观看| 亚洲免费观看高清完整版在线| 美女在线观看视频一区二区| 欧美亚洲自拍偷拍| 精品国产精品网麻豆系列| 午夜欧美电影在线观看| 欧美美女一区二区在线观看| 一区二区三区四区国产精品| 99久久精品免费看| 中文字幕高清不卡| 国产91高潮流白浆在线麻豆| 日韩精品专区在线影院观看| 毛片不卡一区二区| 久久精品亚洲乱码伦伦中文| 精品亚洲成a人| 欧美午夜电影在线播放| 亚洲视频电影在线| 欧美日韩在线不卡| 激情五月激情综合网| 精品国产一区久久| 99精品欧美一区二区三区综合在线| 欧美国产精品专区| 欧洲一区在线电影| 国内精品久久久久影院薰衣草| 国产欧美一区二区三区鸳鸯浴 | 国产成人在线免费| 国产欧美精品一区二区三区四区| 国产高清久久久久| 亚洲成人手机在线| 18成人在线观看| 欧美情侣在线播放| 国产日韩欧美精品一区| 成人国产亚洲欧美成人综合网| 欧美影院一区二区| 黄色日韩三级电影| 久久爱www久久做| 一本色道综合亚洲| 偷拍日韩校园综合在线| 久久久亚洲高清| 欧美丰满嫩嫩电影| 99精品视频一区| 免费高清在线一区| 天天综合天天综合色| 亚洲国产日日夜夜| 日韩伦理免费电影| 精品久久久久久久久久久久久久久久久| 成人一级片在线观看| 久久国产精品99精品国产 | 久久久久久久一区| 精品国产制服丝袜高跟| 欧美aa在线视频| 国产91丝袜在线播放0| 秋霞午夜av一区二区三区| 视频一区二区国产| 青青青伊人色综合久久| 最新热久久免费视频| 国产精品国产自产拍高清av王其| 久久精品一区二区三区不卡 | 视频一区二区欧美| 日韩av二区在线播放| 久久se精品一区二区| 国产成人亚洲综合a∨婷婷| 93久久精品日日躁夜夜躁欧美| 精品视频一区三区九区| 亚洲精品一区在线观看| 欧美高清在线视频| 免费在线欧美视频| 一本大道久久a久久综合| 国产日产精品一区| 丝袜美腿亚洲一区二区图片| 国产成a人亚洲精| 69av一区二区三区| 亚洲精品视频在线| 国产精品自拍三区| 欧美一级高清大全免费观看| 日韩高清国产一区在线| 欧洲色大大久久| 亚洲精品视频免费观看| 国产a级毛片一区| 日韩一级黄色片| 亚洲va国产天堂va久久en| 91丨porny丨国产入口| 国产视频在线观看一区二区三区| 中文子幕无线码一区tr| 色屁屁一区二区| 亚洲精品欧美二区三区中文字幕| av亚洲精华国产精华精| 国产亚洲一区二区三区| 精品一区二区三区在线播放视频| 91麻豆.com| 亚洲黄色av一区| 在线精品视频免费播放| 久久精品久久综合| 精品国产制服丝袜高跟| 国产精品自拍毛片| 日本一区二区成人| 91无套直看片红桃| 亚洲午夜精品网| 日韩视频免费观看高清完整版在线观看 | 欧美日韩高清一区二区不卡| 一片黄亚洲嫩模| 欧美夫妻性生活| 狠狠色综合播放一区二区| 久久久亚洲精品石原莉奈| 91在线观看高清| 蜜桃久久精品一区二区| 久久久国产综合精品女国产盗摄| 一区二区三区欧美| 欧美国产精品v| 欧美一二三四在线| 成人综合婷婷国产精品久久| 亚洲午夜激情网站| 国产精品国产三级国产普通话三级 | 在线欧美日韩国产| 国产主播一区二区三区| 一区二区三区中文字幕电影| 91精品国产综合久久香蕉的特点| 国产一区二区三区四区在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩久久一区| 成人动漫av在线| 蜜臂av日日欢夜夜爽一区| 亚洲色图制服诱惑| 国产精品污污网站在线观看| 日韩视频免费观看高清完整版在线观看 | heyzo一本久久综合| 天天亚洲美女在线视频| 日韩电影一区二区三区四区| 亚洲高清在线视频| 欧美精品电影在线播放| 99r国产精品| 国产精品另类一区| 国产日韩精品一区二区三区| 精品毛片乱码1区2区3区| 欧美一区二区三区免费观看视频 | 欧美老肥妇做.爰bbww| 色综合欧美在线视频区| 色综合网站在线| 69精品人人人人| 国产欧美一区二区精品性色超碰| 在线成人免费视频| 欧美电视剧在线看免费| 亚洲国产成人私人影院tom| 国产精品欧美综合在线| 日韩一区二区三区在线| 亚洲日本在线观看| 国产精品久久久久国产精品日日| 久久色视频免费观看| 国产精品高清亚洲| 亚洲电影在线播放| 激情国产一区二区| 91福利资源站| 色综合一个色综合| 综合久久久久久久| 国产综合色产在线精品| 91视频国产资源| 久久久另类综合| 日本欧美大码aⅴ在线播放| 国产成人午夜片在线观看高清观看| 日本vs亚洲vs韩国一区三区二区 | 国产精品一二三四五|