合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫(xiě)CHEE 4703、代做Java/Python編程設(shè)計(jì)
        代寫(xiě)CHEE 4703、代做Java/Python編程設(shè)計(jì)

        時(shí)間:2024-11-27  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        CHEE **03: Process Dynamics and Control Fall 2024 
         
        Lab 3: Root Locus Diagram and Controller Tuning 
        Process Background 
        Consider a blending process with two inlet streams and a single (overflow) outlet stream. The 
        schematic diagram of the process is shown in Figure 1, where x1, x2 and x represent the mass 
        fraction of component A and w1, w2 and w represents the overall mass flow rate. One of the inlet 
        streams, stream 1, is made up of compound A (and the balance compound B). The mass fraction 
        of A is a disturbance variable and has a steady state value of 20% (with a total steady state flow 
        rate of 1 kg/min). The other inlet stream, stream 2, is made up of pure B, where the flow rate is a 
        manipulated variable. The outlet mass fraction of A is a controlled variable with a target of 10%. 
        Assume that there is 10 kg of liquid in the tank (constant volume with a density similar to water). 
         
        Figure 1. A blending process in a CSTR. 
        Process Parameters 
        The process operating conditions are as follows: 
        Constants Input Steady State Conditions 
        V 10 L   **;**;**;1**; 1 kg/s 
        ρ 1 kg/L   **;**;1**; 0.2 
        x2 0   **;**;**;2**; 1 kg/s 
        Output Steady State Condition 
          **; 0.1 
         CHEE **03: Process Dynamics and Control Fall 2024 
         
        Kathy Isaac, Stanislav Sokolenko Page 2 of 7 
         
        From Example 10 in Topic 2, the process, Gp, and disturbance, Gd, transfer functions are: 
         
        The process is controlled by a PI controller, Gc. Model the actuator, Gv, with a variable delay, a, 
        and assume all other transfer functions are unity (Gm = Gs = 1). 
         (1/1 𝑃𝑎𝑑é 𝑎w**1;w**1;w**3;w**0;w**9;𝑖𝑚𝑎w**5;𝑖w**0;𝑛) 
         
        Figure 2. General representation of a closed loop process. 
        Objectives 
        1. Determine the critical controller parameters using a root locus plot. 
        2. Evaluate the effect of delay on stability and critical controller parameter using root locus plots. 
        3. Apply the direct synthesis controller tuning method to the process and evaluate the response 
        to disturbance rejection. 
         
         CHEE **03: Process Dynamics and Control Fall 2024 
         
        Kathy Isaac, Stanislav Sokolenko Page 3 of 7 
         
        Controller Setup 
        1. Implement a closed loop PI controller in Simulink to control the outlet mass fraction of 
        component A by controlling the flow rate of stream 2 as illustrated in Figure 2. 
        • Use Transfer Fcn blocks to implement the process, Gp, disturbance, Gd, and the actuator, 
        Gv. 
        • Refer to Prelab 2 to set up the appropriate controller in a closed loop process. 
        • Use Setpoint blocks for the setpoint and disturbance inputs and set the setpoint equal to a 
        constant value of 0 and the disturbance input to a constant value of 0.1. 
        Root Locus Diagram 
        2. Add a Pole-Zero Plot block and set the Disturbance input signal as the Input Perturbation and 
        the Process output signal as the Output Measurement. See the example provided at the end of 
        this document for an example on setting up the root locus plot. 
         
        Questions 
        1. For the closed loop process with a PI controller with a delay of 1 s, set Kc = 1 and find the 
        critical τI. Make plots of the poles and zeros showing the transition from stable to unstable at 
        the critical τI. Include 3 plots: stable, critical and unstable. Repeat for delays of 3 and 5 s. Note: 
        Set the Setpoint block constant at 0 and the Disturbance Step block constant at 0.1 
        a. How does the critical τI change with increase in delay? 
        2. For the closed loop process with a PI controller with a delay of 1 s, set τI = 10 and find the 
        critical Kc. Make a plot of the poles and zeros showing the transition from stable to unstable at 
        the critical Kc. Include 3 plots: stable, critical and unstable. Repeat for delays of 3 and 5 s. 
        Note: Set the Setpoint block constant at 0 and the Disturbance Step block constant at 0.1 
        a. How does the critical Kc change with increase in delay? CHEE **03: Process Dynamics and Control Fall 2024 
         
        Kathy Isaac, Stanislav Sokolenko Page 4 of 7 
         
        3. When there is no delay in the actuator, tune the PI controller using the direct synthesis method 
        and evaluate the response to a step change of 0.1 in the disturbance variable to different values 
        of τc between 10 and 100. Note: set the initial value of the disturbance input to 0 and the final 
        value to 0.1. 
        a. How does τc affect the process response? 
        b. What τc should be chosen if the process must reject a step disturbance of 0.1 in under 
        60 seconds with no large oscillations. 
        Report Guidelines 
        1. Use the lab report template provided. 
        2. The report must seek to concisely answer the questions in the previous section. 
        3. The text of the report body must be within 1 page. It is recommended to use a 12-point font, 
        1.5 spaced but please use 1**point font, single spaced at a minimum. 
        4. Do not break up the text. Add all the text to page 1 and refer to figures and tables on subsequent 
        pages to aid your discussion. 
        5. Include a screenshot of your complete Simulink model for the PI controller set up in Question1.

        Pole-Zero Plot Example for the Heating Tank Process 
        1. Set up the closed loop for the given process and controller. Set the Setpoint block constant at 
        0 and the Disturbance Step block constant at 1. 
         CHEE **03: Process Dynamics and Control Fall 2024 
         
        Kathy Isaac, Stanislav Sokolenko Page 5 of 7 
         
        2. Add a Pole-Zero Plot block to the workspace 
         
        3. Double click on the Pole-Zero Plot block and click on the + symbol to add inputs and outputs 
         
        4. Click on the disturbance signal (highlighted in blue) and press the << symbol to add the 
        selected signal. Repeat for the Output signal. CHEE **03: Process Dynamics and Control Fall 2024 
         
        Kathy Isaac, Stanislav Sokolenko Page 6 of 7 
         
         
        5. Once added, change the Configuration of the input signal to Input Perturbation and the 
        output to Output Measurement and click Apply. Change the snapshot time to 1. 
         
        6. Click on Show Plot 
         CHEE **03: Process Dynamics and Control Fall 2024 
         
        Kathy Isaac, Stanislav Sokolenko Page 7 of 7 
         
        7. Click on the green Run button to display the poles and zeros. Poles are represented by x and 
        zeros by o. Click on them to see their exact values 
         
        8. Change controller parameters and assess how the poles and zeros change. 
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:ESTR1002代做、代寫(xiě)C/C++設(shè)計(jì)編程
      2. 下一篇:&#160;COMP338編程代做、代寫(xiě)Python程序語(yǔ)言
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫(xiě)作 aippt AI生成PPT 阿里商辦

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 蜜桃传媒一区二区亚洲AV| 成人精品视频一区二区三区不卡 | 在线免费视频一区| 国产亚洲无线码一区二区| 日韩精品国产一区| 中文字幕一区在线观看视频| 成人精品视频一区二区三区不卡| 国产日韩精品一区二区三区| 91午夜精品亚洲一区二区三区| 在线精品国产一区二区三区| 免费看AV毛片一区二区三区| 亚洲av成人一区二区三区观看在线 | 麻豆精品人妻一区二区三区蜜桃| 无码人妻一区二区三区在线| 国产精品丝袜一区二区三区| 综合人妻久久一区二区精品| 国产无线乱码一区二三区| 中文字幕一区二区三区四区| 国产精品一区二区久久精品无码| 武侠古典一区二区三区中文| 精彩视频一区二区| 国产福利电影一区二区三区,免费久久久久久久精 | 无码国产精品一区二区免费I6| 精品国产a∨无码一区二区三区| 精品无码一区二区三区爱欲九九| 99精品国产一区二区三区不卡| 亚洲一区二区三区高清| 3d动漫精品啪啪一区二区免费| 免费播放一区二区三区| 精品香蕉一区二区三区| 日韩免费一区二区三区在线| 亚洲av日韩综合一区久热| 日美欧韩一区二去三区| 国产色精品vr一区区三区| 国产丝袜美女一区二区三区| 91精品一区二区| 夜夜高潮夜夜爽夜夜爱爱一区| 天码av无码一区二区三区四区| 亚洲中文字幕无码一区| 亚洲一区二区三区高清视频| 精品无码综合一区二区三区|