99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做 MPHY0041、代寫 C++設計編程
代做 MPHY0041、代寫 C++設計編程

時間:2024-12-02  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 UCL DEPARTMANT OF MEDICAL PHYSICS AND
BIOMEDICAL ENGINEERING
Module Code: Module Title : Coursework Title : Lecturer:
Date Handed out: Student ID (Not Name)
MPHY0041
Machine Learning in Medical Imaging Assessed Coursework
Dr. Andre Altmann
Friday, October 25th 2024
Undergraduate / Postgraduate Assessed Coursework Tracking Sheet
              Submission Instruction: Before the submission deadline, you should digitally submit your source code and generated figures (a single jupyter notebook file including your written answers). In case you submit multiple files, all files need to be combined in one single zip file and submitted on the module page at UCL Moodle.
Coursework Deadline: Friday, November 29th 2024 at 16:00 at UCL Moodle submission section
Date Received
Date Returned to Student:
The Department of Medical Physics and Biomedical Engineering follows the UCL Academic Manual with regards to plagiarism and coursework late submission. UCL Policy on Plagiarism
UCL Policy on Late Submission of Coursework
If you are unable to submit on-time due to extenuating circumstances (EC), please refer to the UCL Policy on Extenuating Circumstances and contact our EC Secretary at medphys.teaching@ucl.ac.uk as soon as possible.
UCL Policy on Extenuating Circumstances
Please indicate what areas of your coursework you particularly would like feedback on:
Mark (%):
Please note that the mark is provisional and could be changed when the exam boards meet to moderate marks.
                
Please note: This is an AI Category 1 coursework (i.e., AI technologies cannot be used to solve the questions): https://www.ucl.ac.uk/teaching-learning/generative-ai-hub/using- ai-tools-assessment.
Please submit a single jupyter notebook file for Exercises 1, 2, and 3. The file should contain code, plots and comments that help the understanding of your answers. You can give your written answers as a Markdown within the jupyter notebook.
The provided jupyter notebook Notebook_MPHY0041_2425_CW1.ipynb contains the individual gap codes/functions for Exercise 2 and the functions provided for Exercise 3. Please use this notebook as the basis for your submission.
1. Load the dataset ‘Dementia_train.csv’ it contains diagnosis (DX), a cognitive score (ADAS13) and two cerebrospinal fluid (CSF) measurements for two proteins: amyloid and tau. There are three diagnostic labels: CN, MCI, and Dementia.
a) Remove MCI subjects from the dataset. Compute means for each of the three
measurements (ADAS13, ABETA, TAU) for the ‘CN’ (𝜇!") and the ‘Dementia’ (𝜇#$)
groups. In addition, compute the standard deviation (ҵ**;) for these three measures
across the diagnostic groups. Assume that the data follow a Gaussian distribution:
   1 %&( *%+ -! 𝑓(w**9;)= ҵ**;√2𝜋Ү**; ' ,
,
with the means and standard deviation as computed above. Compute the decision boundary between the two disease groups for each of the three features (with the prior probabilities 𝜋.! = 𝜋#$ = 0.5).
Load the dataset ‘Dementia_test.csv’ that contains the same information for another 400 participants. After removing people with MCI, use the decision boundaries from above to compute accuracy, sensitivity and specificity for separating CN from Dementia for each of the three features. [8]
b) Using sklearn functions, train a LinearRegression to separate CN from Dementia subjects using ABETA and TAU values as inputs. Generate a scatter plot for ABETA and TAU using different colours for the two diagnostic groups. Compute the decision boundary based on the linear regression and add it to the plot. What is the accuracy, sensitivity and specificity of your model on the test data for separating CN from Dementia? [7]
c) The previous analyses ignored the subjects with MCI. Going back to the full dataset, compute means for all three groups for ABETA and TAU as well as the joint variance-covariance matrix Σ. Use these to compute linear decision boundaries between all pairs of classes (with the prior probabilities 𝜋.! = 𝜋/!0 =
𝜋#$ = 0.33) without using any models implemented in sklearn. Generate a new scatterplot and add the three decision boundaries. What is the accuracy, sensitivity and specificity for separating CN from Dementia with this method?
[10]

2. Here we complete implementations for different machine learning algorithms. The code with gaps can be found in the notebook Notebook_MPHY0041_2425_CW1.ipynb.
a) The function fit_LogReg_IWLS contains a few gaps that need to be filled for the function to work. This function implements Logistic Regression using iterative weighted least squares (IWLS) as introduced in the lectures. Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset (DX column indicates PD status, remaining columns are the features). Use the LogisticRegression implemented in sklearn to train a model on the same data. Make a scatter plot between the coefficients obtained from your implementation and the sklearn model. Comment on the
result.
(Hint: The operator @ can be used for matrix multiplications; the function np.linalg.pinv() computes the pseudo-inverse of the matrix: X-1). [7]
b) The function fit_LogReg_GRAD aims to implement Logistic Regression using gradient descent. However, there are still a few gaps in the code. Complete the computation of the cost (J(β)) as well as the update of the beta coefficients. (Hint: gradient descent aims to minimise the cost; however, Logistic Regression is fitted by maximising the log likelihood). Use your function to train a model that separates Healthy controls from PD subjects in the LogReg_data.csv dataset.
Run the training for 3000 iterations with 𝛼 = 0.1. Compare the obtained coefficients to the ones obtained from the IWLS implementation in part a). Comment on the result. [7]
c) The function fit_LogReg_GRAD_momentum aims to implement Logistic Regression using gradient descent with momentum. Extend your solution from (b) and add momentum to the optimization as introduced in the lectures. Use the parameter gamma as the trade-off between momentum and gradient. Train your model on the dataset Syn_Momentum.csv (two inputs X1, X2, and one target y). Run the gradient descent for 100 iterations and compare to the standard gradient descent from (b) also run for 100 iterations (both with 𝛼 = 0.001). How does the Loss evolve over the iterations? Explain your observation. [7]
d) When working with medical data we often encounter biases. This could mean that our target variable (𝑦) is accidentally correlated to another variable (𝑦'). We would like to estimate the model to predict 𝑦, while ignoring the effects introduced by 𝑦'. The trade-off between the objectives can be modified using the parameter 𝛿. Provide a Loss function for this scenario (where both 𝑦 and 𝑦'are fitted using a Logistic Regression). Complete the function fit_LogReg_GRAD_competing, which should implement these logistic regressions with gradient descent. Use the variable delta to implement the trade-off. Load the dataset sim_competitive.csv, it contains two input features (x1, x2) and two output features (y1, y2). Apply your function with different values for 𝛿 (0, 0.5, 0.75, 1.0). Make a scatter plot of the data and add the decision boundaries produced by the four models. [9]

3. This exercise uses T2-weighted MR images of the prostate and surrounding tissue (information here). The task to be solved is to automatically segment the prostate in these images. The input images are gray-scale images with 128x128 pixels (below left) and the output should be a binary matrix of size 128x128, where a 1 indicates the prostate (below right).
The promise1215.zip archive contains three sets of images: training, validation, test. For training, there are 30 MR images paired with their ground truth (i.e., masks). For instance, train/img_02_15.png is the MRI and train/lab_02_15.png is the corresponding ground truth. The function preprocess_img computes a series of filters (raw, sobel, gabor, difference of gaussians, etc.) to be used for the machine learning algorithm. For instance, application to the above image results in the following channels (Figure 1). Use the function provided in create_training_set to randomly sample 1000 patches of size 21x21 from the 30 training images to generate an initial dataset. The resulting dataset is heavily imbalanced (more background patches than target), the function sub_sample is used to generate a random subset of 1000 patches from the entire training data with an approximate 50-50 distribution.
a) Using sklearn, train an SVC model to segment the prostate. Optimize kernel choice (e.g., RBF or polynomial with degree 3) and the cost parameter (e.g., C in the range 0.1 to 1000) using an appropriate variant of cross-validation. Measure performance using the Area Under the ROC Curve (roc_auc) and plot the performance of the kernels depending on the C parameter. (Hint: when SVC seems to take an endless time to train, then change your choice of C parameters; large C parameters ® little regularization ® long training time. E.g., in Colab this took about 30 minutes). [10]
b) Based on your result from a) select the best model parameters and make predictions of the 10 images in the validation dataset. Compute the DICE coefficient and roc_auc for each image. Display the original image, the ground truth, and your segmentations for any 5 images in your validation set. Provide the average DICE coefficient and roc_auc for the entire validation dataset. (Hint: this can take a few minutes per image.) [8]
    
 Figure 1: Feature channels. Numbered from top left to bottom right. (1) raw input image (2) Scharr filter, (3-6) Gabor filter with frequency 0.2 in four directions (7-10) Gabor filter with frequency 0.4 in four directions (1**14) Gabor filter with frequency 0.6 in four directions (15-18) Gabor filter with frequency 0.8 in four directions (19) Local Binary Pattern (LBP) features, and (20) difference of gaussians.
c) Instead of the SVC, train a tree-based ensemble classifier and make predictions for the validation images. Report the average roc_auc and DICE coefficient for the entire validation set. What performs better: the SVC or the tree ensemble? Are tree ensembles or the SVC faster to train and apply? Explain why this is the case.
[7]
d) Use the tree-based ensemble method and explore how the amount of training data (i.e., sub sample size: 500, 1000, 2500, 5000), the patch dimensions (11x11, 17x17, 21x21, 27x27, 31x31) affects the performance on the validation set. [10]
e) As shown in the lectures, post-process your prediction using morphological operations and filters to achieve a better segmentation result. (Hint: some morphological operations are implemented in skimage.morphology; link). Report how your post-processing influences your DICE score on the validation
data. [5]
f) Using your best combination of training data size and patch dimension (from d) and post processing methods (from e), estimate the performance on unseen samples from the test set. Display the original image, the ground truth, and your segmentations for any 5 images in your test set. Provide average DICE coefficient for the entire test set. [5]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CE235、代做 Python 語言編程
  • 下一篇:COMP3173 代做、代寫 Java/c++編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区三区四区不卡视频| 亚洲国产视频一区二区| 中文字幕字幕中文在线中不卡视频| 国内精品伊人久久久久av影院| 91.麻豆视频| 精品一区二区三区免费观看| 久久精品男人天堂av| aaa欧美日韩| 亚洲成人你懂的| 精品日产卡一卡二卡麻豆| 国产福利一区二区三区视频在线| 亚洲欧美日韩综合aⅴ视频| 欧美日韩一区二区三区四区五区 | 欧美日韩一区三区| 日本怡春院一区二区| 中文字幕av资源一区| 欧美日本国产视频| 成人一道本在线| 美国av一区二区| 亚洲欧美日韩国产中文在线| 日韩一区二区免费视频| 色综合天天综合在线视频| 婷婷综合久久一区二区三区| 国产欧美久久久精品影院| 91精品国产91热久久久做人人 | www.亚洲人| 国产综合色在线视频区| 亚洲午夜在线电影| 亚洲欧美在线视频| 26uuu色噜噜精品一区二区| 欧美性受xxxx| 国产中文字幕精品| 亚洲精品乱码久久久久久黑人| 久久久久久久久久电影| 正在播放一区二区| 欧美日韩国产一级二级| 欧美最新大片在线看| 91在线精品一区二区三区| 国产精品一区二区你懂的| 久色婷婷小香蕉久久| 婷婷六月综合网| 亚洲国产精品久久人人爱| 国产精品久线在线观看| 国产亚洲一二三区| 日本一区二区不卡视频| 日本一区二区久久| 国产精品无遮挡| 国产精品热久久久久夜色精品三区| 久久久久免费观看| 久久久蜜桃精品| 国产喷白浆一区二区三区| 国产亚洲欧美日韩日本| 欧美国产日韩在线观看| 国产精品久久久久一区二区三区共| 久久九九99视频| 精品剧情v国产在线观看在线| 日韩欧美国产高清| 久久综合99re88久久爱| 亚洲国产激情av| 中文字幕一区二区三区在线播放| 亚洲欧洲av在线| 亚洲小说春色综合另类电影| 日韩精品一二区| 国内精品久久久久影院色| 国产suv精品一区二区6| 波多野结衣一区二区三区| 色噜噜夜夜夜综合网| 欧美日韩中文精品| 久久综合九色综合97_久久久| 国产欧美精品一区aⅴ影院| 久久精品一区二区三区不卡牛牛 | 在线观看国产一区二区| 欧美日韩国产综合一区二区| 制服丝袜国产精品| 国产色一区二区| 亚洲欧美乱综合| 日韩影视精彩在线| 国产成人午夜电影网| 91在线小视频| 欧美大片顶级少妇| 综合婷婷亚洲小说| 免费成人av在线| av一本久道久久综合久久鬼色| 欧美羞羞免费网站| 国产午夜精品美女毛片视频| 最新日韩av在线| 日韩电影在线一区二区三区| 风间由美一区二区三区在线观看| 欧美日韩一级二级| 国产日韩成人精品| 无码av中文一区二区三区桃花岛| 国产91精品入口| 日韩视频在线永久播放| 亚洲美女电影在线| 黑人精品欧美一区二区蜜桃| 91精品1区2区| 久久精品亚洲乱码伦伦中文| 亚洲图片欧美色图| 成人黄动漫网站免费app| 欧美一区二区三级| 亚洲综合精品自拍| 成人av在线电影| 久久综合色婷婷| 日本成人在线视频网站| 色综合久久九月婷婷色综合| 久久精品视频在线免费观看| 美女性感视频久久| 欧美精选一区二区| 午夜久久电影网| 在线精品亚洲一区二区不卡| 亚洲欧美自拍偷拍色图| 成人免费视频视频在线观看免费| 欧美mv和日韩mv国产网站| 丝袜美腿高跟呻吟高潮一区| 欧美最新大片在线看| 亚洲精品视频在线观看免费| 99riav久久精品riav| 国产欧美一区二区三区网站| 国产精品99久久久久久宅男| 亚洲精品一线二线三线| 美女一区二区三区在线观看| 51精品视频一区二区三区| 丝袜亚洲精品中文字幕一区| 欧美一区二区在线免费播放| 美女网站一区二区| 欧美tickling挠脚心丨vk| 国模冰冰炮一区二区| 国产嫩草影院久久久久| 成人黄动漫网站免费app| 国产精品久久久久久久久免费樱桃| 丰满白嫩尤物一区二区| 国产精品麻豆欧美日韩ww| 9i在线看片成人免费| 亚洲激情第一区| 欧美午夜片在线看| 欧美aaa在线| 亚洲精品一区二区三区精华液 | 国产偷国产偷亚洲高清人白洁| 国产激情一区二区三区四区 | 蜜臀国产一区二区三区在线播放| 日韩一区二区三区观看| 国产美女主播视频一区| 成人欧美一区二区三区在线播放| 91农村精品一区二区在线| 亚洲国产精品一区二区www| 日韩三级视频在线看| 国产成人av影院| 亚洲色图欧美激情| 正在播放亚洲一区| 国产成人精品免费| 亚洲综合色婷婷| 精品欧美一区二区三区精品久久| 国产自产2019最新不卡| 亚洲欧美激情小说另类| 日韩写真欧美这视频| 国产91丝袜在线播放0| 亚洲午夜精品网| 国产午夜三级一区二区三| 在线精品视频免费观看| 国产一区二区三区香蕉| 一区二区三区四区不卡在线 | 午夜影院在线观看欧美| 精品电影一区二区三区| 欧美亚洲国产一区二区三区va| 久久成人精品无人区| 一区二区三区在线视频观看| 精品国产一区二区三区久久久蜜月| 92国产精品观看| 久久爱www久久做| 亚洲国产成人av好男人在线观看| 久久一夜天堂av一区二区三区| 色偷偷久久人人79超碰人人澡| 激情综合色综合久久综合| 亚洲欧美日韩在线| 久久久精品免费网站| 在线不卡a资源高清| 色综合久久久久综合体桃花网| 精品制服美女丁香| 亚洲伊人色欲综合网| 国产精品蜜臀在线观看| 精品国产青草久久久久福利| 欧美日韩视频在线第一区| 色综合久久中文综合久久牛| 丁香六月综合激情| 国产露脸91国语对白| 蜜桃91丨九色丨蝌蚪91桃色| 亚洲国产精品久久人人爱| 亚洲精品ww久久久久久p站 | 亚洲婷婷在线视频| 国产日韩综合av| 久久久久久久久久看片| 亚洲精品一区二区三区蜜桃下载 | 精品在线播放免费| 蜜桃av一区二区| 日韩电影免费在线看| 一区二区三区在线播放| 亚洲综合免费观看高清完整版| 一区二区三区在线观看欧美| 亚洲一区在线免费观看| 亚洲成a天堂v人片|