99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产在线精品一区二区| 激情综合网激情| 亚洲女人小视频在线观看| heyzo一本久久综合| 日韩欧美高清一区| 国产一区二区精品久久| www国产成人免费观看视频 深夜成人网| 亚洲一卡二卡三卡四卡五卡| 欧美一级免费大片| 亚洲成a人v欧美综合天堂下载| 欧美一区二区三区四区久久| 喷水一区二区三区| 日韩欧美成人一区| 91国产福利在线| 天天色天天爱天天射综合| 国产午夜精品一区二区三区视频 | 狠狠色狠狠色综合| 久久人人爽爽爽人久久久| 盗摄精品av一区二区三区| 亚洲欧美日韩国产一区二区三区| 欧美综合一区二区| 国产在线精品一区二区三区不卡| 国产亚洲欧洲997久久综合| 欧洲亚洲国产日韩| 久久精品噜噜噜成人av农村| 欧美色手机在线观看| 国产精品自拍一区| 1024精品合集| 国产欧美日韩一区二区三区在线观看| av不卡在线观看| 狠狠色丁香久久婷婷综| 国产精品久久久久久户外露出 | 亚洲黄色录像片| 欧美成人aa大片| 99久久er热在这里只有精品15 | 欧美精品aⅴ在线视频| 菠萝蜜视频在线观看一区| 亚洲国产一区二区三区| 99久久精品免费精品国产| 奇米精品一区二区三区四区| 中国av一区二区三区| 久久这里只有精品首页| 一本久久a久久免费精品不卡| 国产寡妇亲子伦一区二区| 亚洲日本免费电影| 久久麻豆一区二区| 欧美精品久久99| 99v久久综合狠狠综合久久| 国产精品一二二区| 日韩和欧美的一区| 午夜欧美2019年伦理| 中文字幕在线不卡一区| 欧美一区二区三区视频在线| 91精品啪在线观看国产60岁| aa级大片欧美| 樱桃国产成人精品视频| 亚洲少妇最新在线视频| 欧美国产视频在线| 亚洲男帅同性gay1069| 精品少妇一区二区三区在线播放 | 国模大尺度一区二区三区| 麻豆久久久久久久| 亚洲18影院在线观看| 日韩电影在线一区二区三区| 亚洲欧洲日产国码二区| 亚洲国产电影在线观看| 国产精品久久久久久久岛一牛影视| 欧美岛国在线观看| 欧美激情一区三区| 国产精品天天摸av网| 亚洲欧美日韩国产另类专区| 综合久久国产九一剧情麻豆| 欧美一区二区精品久久911| 亚洲精品在线电影| 久久久电影一区二区三区| 久久久久久夜精品精品免费| 精品成人一区二区| 亚洲色图制服诱惑 | 在线视频综合导航| 91麻豆免费观看| 制服视频三区第一页精品| 制服丝袜亚洲播放| 国产精品网站在线观看| 亚洲男人的天堂在线观看| 亚洲欧洲日产国产综合网| 五月综合激情日本mⅴ| 午夜亚洲国产au精品一区二区| 久久国产精品99久久人人澡| 激情综合色综合久久综合| 不卡在线视频中文字幕| 91福利视频在线| 欧美一区二区在线视频| 亚洲三级电影网站| 亚洲一区二区三区中文字幕| 国产在线精品免费| 国产一区二区三区蝌蚪| 欧美日韩国产美| 26uuu亚洲| 欧美一区二区人人喊爽| 亚洲精品中文在线| 亚洲高清视频在线| 91色综合久久久久婷婷| 在线综合+亚洲+欧美中文字幕| 亚洲色图一区二区三区| 日av在线不卡| 国产精品国产三级国产a| 久久久久9999亚洲精品| 亚洲免费观看高清完整| 麻豆成人在线观看| 91丨porny丨户外露出| 欧美一区二区三区视频免费播放 | 91麻豆精品国产91久久久久久久久 | 黄色精品一二区| 成人高清视频免费观看| 欧美日韩中文另类| 亚洲精品成人少妇| 国产一区三区三区| 日韩精品在线网站| 亚洲素人一区二区| 91丨九色丨尤物| 精品国产乱码久久久久久图片| 欧美最新大片在线看| 国产女同性恋一区二区| 日韩国产在线一| 欧美日本韩国一区二区三区视频| 国产欧美日韩精品在线| 国产麻豆精品一区二区| 欧美浪妇xxxx高跟鞋交| 久久久久国产免费免费 | 色婷婷精品大在线视频 | 精品欧美一区二区在线观看| 亚洲欧美在线高清| 日韩黄色免费网站| 精品视频在线看| 国产精品久久久久aaaa| 国内精品写真在线观看| 欧美日韩成人综合| 一区二区三区丝袜| 欧美精选一区二区| 亚洲成人av一区二区三区| 在线精品视频免费播放| 中文字幕一区二区在线播放| 一道本成人在线| 中文字幕一区二区三区在线观看 | 国产精品毛片大码女人| 日本三级亚洲精品| 精品捆绑美女sm三区| 日本午夜一本久久久综合| 精品国产凹凸成av人导航| 久久电影网站中文字幕| 久久久久久久一区| 高清免费成人av| 国产亚洲一区二区在线观看| 91日韩一区二区三区| 亚洲视频一区二区在线| 日韩色在线观看| 精品制服美女久久| 国产午夜精品一区二区 | 成人av电影在线播放| 国产精品久久久久久久久图文区 | 亚洲午夜精品网| 欧美二区在线观看| 精品一区二区av| 亚洲尤物视频在线| 日韩一级二级三级| 99综合影院在线| 亚洲成人免费视频| 国产在线精品不卡| 亚洲色图制服丝袜| 国产黄色成人av| 美日韩一区二区三区| 久久久美女毛片| 欧美绝品在线观看成人午夜影视| 日韩成人午夜电影| 亚洲欧美偷拍另类a∨色屁股| 欧美色精品在线视频| 成熟亚洲日本毛茸茸凸凹| 一区二区三区丝袜| 国产精品久久久久久久裸模| 欧美精品乱码久久久久久按摩| 97精品视频在线观看自产线路二| 亚洲mv在线观看| 一区二区三区在线观看网站| 91精品国产综合久久久久久 | 久久亚区不卡日本| 热久久一区二区| **性色生活片久久毛片| 91麻豆精品国产91久久久资源速度| 日韩中文字幕亚洲一区二区va在线| 国产精品伦一区| 欧美日韩国产综合视频在线观看| av网站一区二区三区| 天天色综合天天| 丝袜诱惑制服诱惑色一区在线观看| 精品电影一区二区三区| 欧美成人a∨高清免费观看| 欧洲精品视频在线观看| 91久久香蕉国产日韩欧美9色| 黄色日韩三级电影| 国产成人自拍网|