合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫(xiě)INFS2044、代做Python設(shè)計(jì)編程
        代寫(xiě)INFS2044、代做Python設(shè)計(jì)編程

        時(shí)間:2024-12-19  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        INFS2044 Assignment 2 Case Study 
         
        In this assignment, you will be developing a system for finding images based on the objects 
        present in the images. The system will ingest images, detect objects in the images, and 
        retrieve images based on labels associated with objects and by similarity with an example 
        image. 
         
        Use Cases 
         
        The system supports the following use cases: 
         
        • UC1 Ingest Image: User provides an image, and System stores the image, identifies 
        objects in the image, and records the object types detected in the image in an index. 
         
        • UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
        system returns the images in its index that match those listed. The system shall 
        support two matching modes: 
         
        o ALL: an image matches if and only if an object of each specified type is 
        present in the image 
        o SOME: an image matches if an object of at least one specified type is present 
        in the image 
         
        • UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
        top K most similar images in order of descending similarity. The provided image may 
        or may not already be in the system. The similarity between two images is 
        determined based on the cosine similarity measure between the object types 
        present in each image. The integer K (K>1) specifies the maximum number of images 
        to retrieve. 
         
        • UC4 List Images: System shows each image and the object types associated with 
        each image in the index. 
         
         
         Example Commands 
         
        The following are example commands that the command line frontend of the system shall 
        implement: 
         
        UC1: 
         
        $ python image_search.py add example_images/image1.jpg 
        Detected objects chair,dining table,potted plant 
         
        $ python image_search.py add example_images/image2.jpg 
        Detected objects car,person,truck 
         
        $ python image_search.py add example_images/image3.jpg 
        Detected objects chair,person 
         
        $ python image_search.py add example_images/image4.jpg 
        Detected objects car 
         
        $ python image_search.py add example_images/image5.jpg 
        Detected objects car,person,traffic light 
         
        $ python image_search.py add example_images/image6.jpg 
        Detected objects chair,couch 
         
        UC2: 
         
        $ python image_search.py search --all car person 
        example_images/image2.jpg: car,person,truck 
        example_images/image5.jpg: car,person,traffic light 
        2 matches found. 
         
        $ python image_search.py search --some car person 
        example_images/image2.jpg: car,person,truck 
        example_images/image3.jpg: chair,person 
        example_images/image4.jpg: car 
        example_images/image5.jpg: car,person,traffic light 
        4 matches found. 
         
        UC3: 
         
        $ python image_search.py similar --k 999 example_images/image3.jpg 
        1.0000 example_images/image3.jpg 
        0.5000 example_images/image6.jpg 
        0.4082 example_images/image1.jpg 
        0.4082 example_images/image2.jpg 
        0.4082 example_images/image5.jpg 
        0.0000 example_images/image4.jpg 
         
        $ python image_search.py similar --k 3 example_images/image3.jpg 
        1.0000 example_images/image3.jpg 
        0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
         
        $ python image_search.py similar example_images/image7.jpg 
        0.5774 example_images/image1.jpg 
         
        UC4: 
         
        $ python image_search.py list 
        example_images/image1.jpg: chair,dining table,potted plant 
        example_images/image2.jpg: car,person,truck 
        example_images/image3.jpg: chair,person 
        example_images/image4.jpg: car 
        example_images/image5.jpg: car,person,traffic light 
        example_images/image6.jpg: chair,couch 
        6 images found. 
         
        Other requirements 
         
        Input File Format 
         
        The system shall be able to read and process images in JPEG format. 
         
        For UC2, you can assume that all labels are entered in lowercase, and labels containing 
        spaces are appropriately surrounded by quotes. 
         
        Output Format 
         
        The output of the system shall conform to the format of the example outputs given above. 
         
        Unless indicated otherwise, the output of the system does not need to be sorted. 
         
        For UC3, the output shall be sorted in descending order of similarity. That is, the most 
        similar matching image and its similarity shall be listed first, followed by the next similar 
        image, etc. 
         
        For UC4, the output shall be sorted in ascending alphabetical order. 
         
        Internal Storage 
         
        You are free to choose either a file-based storage mechanism or an SQLite-based database 
        for the implementation of the Index Access component. 
         
        The index shall store the file path to the image, not the image data itself. 
         
        Object detection 
         The supplied code for object detection can detect ~** object types. 
         
        Future variations 
         
        • Other object detection models (including external cloud-based systems) could be 
        implemented. 
        • Additional object types could be introduced. 
        • Additional query types could be introduced. 
        • Other similarity metrics could be implemented. 
        • Other indexing technologies could be leveraged. 
        • Other output formats (for the same information) could be introduced. 
         
        These variations are not in scope for your implementation in this assignment, but your 
        design must be able to accommodate these extensions largely without modifying the code 
        that you have produced. 
         
        Decomposition 
         
        You must use the following component decomposition as the basis for your implementation 
        design: 
         
        The responsibilities of the elements are as follows: 
         
        Elements Responsibilities 
        Console App Front-end, interact with the user 
        Image Search Manager Orchestrates the use case processes 
        Object Detection Engine Detect objects in an image 
        Matching Engine Finds matching images given the object types 
        Index Access Stores and accesses the indexed images 
        Image Access Read images from the file system 
         
        You may introduce additional components in the architecture, provided that you justify why 
        these additional components are required. 
         
         Scope & Constraints 
         
        Your implementation must respect the boundaries defined by the decomposition and 
        include classes for each of the elements in this decomposition. 
         
        The implementation must: 
        • run using Python 3.10 or higher, and 
        • use only the Python 3.10 standard libraries and the packages listed in the 
        requirements.txt files supplied with this case study, and 
        • not rely on any platform-specific features, and 
        • extend the supplied code, and 
        • correctly implement the functions described in this document, and 
        • it must function correctly with any given input files (you can assume that the entire 
        content of the files fits into main memory), and 
        • it must include a comprehensive unit test suite using pytest, and 
        • adhere to the given decomposition and design principles taught in this course. 
         
        Focus your attention on the quality of the code. 
         
        It is not sufficient to merely create a functionally correct program to pass this assignment. 
        The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
        the design principles and coding practices discussed in this course. 
         
        Implementation Notes 
         
        You can use the code supplied in module object_detector.py to detect objects in 
        images and to encode the tags associated with an image as a Boolean vector (which you will 
        need to compute the cosine similarity). Do not modify this file. 
         
        You can use the function matplotlib.image.imread to load the image data from a file, and 
        sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
        vectors representing lists of tags. 
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:DSCI 510代寫(xiě)、代做Python編程語(yǔ)言
      2. 下一篇:代寫(xiě)FN6806、代做c/c++,Python程序語(yǔ)言
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線(xiàn))
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)24小時(shí)服務(wù)熱線(xiàn)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)2
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)客服熱線(xiàn)
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
      4. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 亚洲AV成人一区二区三区观看 | 韩国女主播一区二区| 精品国产一区二区三区无码| 无码国产亚洲日韩国精品视频一区二区三区| 一区二区三区在线|日本| 亚洲AV成人精品一区二区三区| 国产视频一区在线观看| 亚洲日本一区二区三区在线不卡| 无码人妻精品一区二区三区久久久| 国产自产在线视频一区| 国产乱子伦一区二区三区| 无码人妻精品一区二区三| 国模大尺度视频一区二区| 一区二区高清视频在线观看| 国产一区二区三区在线| 国产一区二区三区在线观看影院 | 亚洲天堂一区二区三区| 久久国产一区二区| 国产一区二区内射最近更新| 日本高清成本人视频一区| 亚洲一区二区精品视频| 亚洲AV永久无码精品一区二区国产| 国产在线精品一区二区| 国产一区美女视频| 一区二区三区日本视频| 国产成人久久精品一区二区三区| 亚洲一区精品伊人久久伊人 | 麻豆一区二区在我观看| 亚洲国产精品一区二区第一页| 亚洲韩国精品无码一区二区三区 | 好爽毛片一区二区三区四| 动漫精品第一区二区三区| 亚洲视频在线一区二区| 色妞AV永久一区二区国产AV| 亚洲一区二区在线视频| 亚洲一区二区三区写真| 国产在线观看一区二区三区四区 | 人体内射精一区二区三区| 久久无码AV一区二区三区| 在线观看一区二区三区视频| 日本一区二区三区在线视频|