99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS2044、代做Python設計編程
代寫INFS2044、代做Python設計編程

時間:2024-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



INFS2044 Assignment 2 Case Study 
 
In this assignment, you will be developing a system for finding images based on the objects 
present in the images. The system will ingest images, detect objects in the images, and 
retrieve images based on labels associated with objects and by similarity with an example 
image. 
 
Use Cases 
 
The system supports the following use cases: 
 
• UC1 Ingest Image: User provides an image, and System stores the image, identifies 
objects in the image, and records the object types detected in the image in an index. 
 
• UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
system returns the images in its index that match those listed. The system shall 
support two matching modes: 
 
o ALL: an image matches if and only if an object of each specified type is 
present in the image 
o SOME: an image matches if an object of at least one specified type is present 
in the image 
 
• UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
top K most similar images in order of descending similarity. The provided image may 
or may not already be in the system. The similarity between two images is 
determined based on the cosine similarity measure between the object types 
present in each image. The integer K (K>1) specifies the maximum number of images 
to retrieve. 
 
• UC4 List Images: System shows each image and the object types associated with 
each image in the index. 
 
 
 Example Commands 
 
The following are example commands that the command line frontend of the system shall 
implement: 
 
UC1: 
 
$ python image_search.py add example_images/image1.jpg 
Detected objects chair,dining table,potted plant 
 
$ python image_search.py add example_images/image2.jpg 
Detected objects car,person,truck 
 
$ python image_search.py add example_images/image3.jpg 
Detected objects chair,person 
 
$ python image_search.py add example_images/image4.jpg 
Detected objects car 
 
$ python image_search.py add example_images/image5.jpg 
Detected objects car,person,traffic light 
 
$ python image_search.py add example_images/image6.jpg 
Detected objects chair,couch 
 
UC2: 
 
$ python image_search.py search --all car person 
example_images/image2.jpg: car,person,truck 
example_images/image5.jpg: car,person,traffic light 
2 matches found. 
 
$ python image_search.py search --some car person 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
4 matches found. 
 
UC3: 
 
$ python image_search.py similar --k 999 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 
0.4082 example_images/image1.jpg 
0.4082 example_images/image2.jpg 
0.4082 example_images/image5.jpg 
0.0000 example_images/image4.jpg 
 
$ python image_search.py similar --k 3 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
 
$ python image_search.py similar example_images/image7.jpg 
0.5774 example_images/image1.jpg 
 
UC4: 
 
$ python image_search.py list 
example_images/image1.jpg: chair,dining table,potted plant 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
example_images/image6.jpg: chair,couch 
6 images found. 
 
Other requirements 
 
Input File Format 
 
The system shall be able to read and process images in JPEG format. 
 
For UC2, you can assume that all labels are entered in lowercase, and labels containing 
spaces are appropriately surrounded by quotes. 
 
Output Format 
 
The output of the system shall conform to the format of the example outputs given above. 
 
Unless indicated otherwise, the output of the system does not need to be sorted. 
 
For UC3, the output shall be sorted in descending order of similarity. That is, the most 
similar matching image and its similarity shall be listed first, followed by the next similar 
image, etc. 
 
For UC4, the output shall be sorted in ascending alphabetical order. 
 
Internal Storage 
 
You are free to choose either a file-based storage mechanism or an SQLite-based database 
for the implementation of the Index Access component. 
 
The index shall store the file path to the image, not the image data itself. 
 
Object detection 
 The supplied code for object detection can detect ~** object types. 
 
Future variations 
 
• Other object detection models (including external cloud-based systems) could be 
implemented. 
• Additional object types could be introduced. 
• Additional query types could be introduced. 
• Other similarity metrics could be implemented. 
• Other indexing technologies could be leveraged. 
• Other output formats (for the same information) could be introduced. 
 
These variations are not in scope for your implementation in this assignment, but your 
design must be able to accommodate these extensions largely without modifying the code 
that you have produced. 
 
Decomposition 
 
You must use the following component decomposition as the basis for your implementation 
design: 
 
The responsibilities of the elements are as follows: 
 
Elements Responsibilities 
Console App Front-end, interact with the user 
Image Search Manager Orchestrates the use case processes 
Object Detection Engine Detect objects in an image 
Matching Engine Finds matching images given the object types 
Index Access Stores and accesses the indexed images 
Image Access Read images from the file system 
 
You may introduce additional components in the architecture, provided that you justify why 
these additional components are required. 
 
 Scope & Constraints 
 
Your implementation must respect the boundaries defined by the decomposition and 
include classes for each of the elements in this decomposition. 
 
The implementation must: 
• run using Python 3.10 or higher, and 
• use only the Python 3.10 standard libraries and the packages listed in the 
requirements.txt files supplied with this case study, and 
• not rely on any platform-specific features, and 
• extend the supplied code, and 
• correctly implement the functions described in this document, and 
• it must function correctly with any given input files (you can assume that the entire 
content of the files fits into main memory), and 
• it must include a comprehensive unit test suite using pytest, and 
• adhere to the given decomposition and design principles taught in this course. 
 
Focus your attention on the quality of the code. 
 
It is not sufficient to merely create a functionally correct program to pass this assignment. 
The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
the design principles and coding practices discussed in this course. 
 
Implementation Notes 
 
You can use the code supplied in module object_detector.py to detect objects in 
images and to encode the tags associated with an image as a Boolean vector (which you will 
need to compute the cosine similarity). Do not modify this file. 
 
You can use the function matplotlib.image.imread to load the image data from a file, and 
sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
vectors representing lists of tags. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:DSCI 510代寫、代做Python編程語言
  • 下一篇:代寫FN6806、代做c/c++,Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品亚洲一区二区三区在线| 欧美一a一片一级一片| 久久久噜噜噜久噜久久综合| 一本大道av一区二区在线播放| 国内偷窥港台综合视频在线播放| 亚洲免费av在线| 一级女性全黄久久生活片免费| 成人网男人的天堂| 蜜桃视频在线观看一区| 日韩不卡一区二区三区| 精品系列免费在线观看| 国产一区二区精品久久91| 日本伊人精品一区二区三区观看方式| 亚洲一区二区三区免费视频| 一级日本不卡的影视| 日产国产高清一区二区三区| 麻豆91免费观看| 国产真实乱偷精品视频免| 国产成人免费高清| 色美美综合视频| 欧美日本韩国一区| 国产午夜亚洲精品理论片色戒| 国产精品国产三级国产aⅴ原创| 亚洲精品欧美综合四区| 日韩理论片网站| 亚洲综合网站在线观看| 一区二区三区在线免费| 男人的j进女人的j一区| 国产**成人网毛片九色| 欧美群妇大交群的观看方式| 欧美国产日韩精品免费观看| 一区二区三区电影在线播| 国产永久精品大片wwwapp| 91免费视频观看| 国产一区二区三区四区五区美女 | 欧美视频一区二区三区在线观看| 日韩精品在线一区二区| 亚洲一区精品在线| av一区二区不卡| 国产嫩草影院久久久久| 美女尤物国产一区| 91老司机福利 在线| 久久综合狠狠综合久久激情| 日韩制服丝袜av| 欧美理论片在线| 日韩和欧美一区二区三区| 99在线精品视频| 中文字幕中文字幕一区| 国产亚洲成aⅴ人片在线观看| 亚洲综合男人的天堂| 色av成人天堂桃色av| 亚洲一区av在线| 欧美男女性生活在线直播观看| 亚洲超丰满肉感bbw| 麻豆久久久久久久| 精品奇米国产一区二区三区| 免费在线观看一区二区三区| 精品粉嫩aⅴ一区二区三区四区 | 国产精品视频免费看| 久久久久国产一区二区三区四区 | 免费的国产精品| 日韩欧美不卡一区| av在线播放不卡| 1区2区3区欧美| 国产成人h网站| 婷婷综合久久一区二区三区| 日韩一级免费观看| 97久久精品人人做人人爽50路| 一区二区三区欧美日韩| 精品日韩一区二区三区免费视频| 成人午夜大片免费观看| 欧美激情一区二区| 99re热视频这里只精品| 久久97超碰国产精品超碰| 亚洲色图清纯唯美| 国产日韩欧美精品在线| 日韩一区二区三区免费看| av电影一区二区| 国产精品一卡二| 日本不卡在线视频| 夜夜嗨av一区二区三区网页| 久久久.com| 久久精品视频免费| 国产亚洲一本大道中文在线| 日韩一区二区视频| 日韩免费一区二区| 久久久久久久久97黄色工厂| 欧美午夜片在线观看| 亚洲欧洲成人自拍| 国产亚洲一本大道中文在线| 欧美高清hd18日本| 91麻豆精品国产91久久久久久| 91成人在线免费观看| 色八戒一区二区三区| 欧美视频一区二区三区四区| 在线观看精品一区| 日韩一区二区麻豆国产| 日韩免费观看2025年上映的电影| 欧美喷水一区二区| 日本一二三不卡| 亚洲一区二区在线观看视频| 一区二区三区四区激情| 日本少妇一区二区| 99久久久久免费精品国产| 欧美一a一片一级一片| 91精品综合久久久久久| 国产女主播视频一区二区| 亚洲视频免费在线| 久久精品国产99国产| 成人av在线一区二区三区| 欧美日韩亚洲综合| 一区二区三区在线免费观看| 日本三级韩国三级欧美三级| 91猫先生在线| 欧美成人a∨高清免费观看| 一区二区三区四区不卡视频| 韩国女主播一区| 欧美一区2区视频在线观看| 国产精品国产a| 中文字幕一区二区日韩精品绯色| 中文av字幕一区| 国产精品中文有码| 欧美精品一区二区三区高清aⅴ | 在线视频欧美精品| 亚洲精品乱码久久久久久久久| 成人精品免费看| 久久久久久夜精品精品免费| 久久99精品国产麻豆婷婷| 日韩一级视频免费观看在线| 亚洲电影激情视频网站| 欧美日韩黄色一区二区| 蜜臀av性久久久久蜜臀aⅴ流畅| 欧美日韩一区二区在线观看| 亚洲制服丝袜在线| 欧美大度的电影原声| 久久电影国产免费久久电影| 精品日韩欧美一区二区| 成人激情开心网| 亚洲综合成人网| 日韩三区在线观看| 国产99精品国产| 亚洲欧美日韩国产综合| 欧美蜜桃一区二区三区| 国产一区美女在线| 一区二区三区在线观看动漫| 欧美一级视频精品观看| 91视视频在线直接观看在线看网页在线看| 综合欧美亚洲日本| 欧美一级电影网站| 91亚洲精品久久久蜜桃网站| 日本成人在线视频网站| www.亚洲人| 亚洲国产毛片aaaaa无费看| 欧美精品一区二区三区高清aⅴ | 亚洲一区二区三区四区五区中文 | av在线不卡网| 久久国产日韩欧美精品| 综合在线观看色| 日本一区二区高清| 久久久久久毛片| 日韩一区二区精品在线观看| 91久久线看在观草草青青| 成人污视频在线观看| 狠狠色狠狠色综合系列| 日韩成人av影视| 日韩精品国产精品| 开心九九激情九九欧美日韩精美视频电影 | 91麻豆精品国产91久久久资源速度| 蜜桃av一区二区三区| 一区二区三区四区在线播放 | 亚洲影院在线观看| 亚洲美女区一区| 亚洲一区影音先锋| 丝袜国产日韩另类美女| 日韩在线播放一区二区| 五月婷婷欧美视频| 日韩国产精品91| 精品一区中文字幕| 不卡区在线中文字幕| 成年人国产精品| 欧美三级日韩三级国产三级| 日韩一级高清毛片| 中文字幕精品综合| 亚洲欧美日韩中文字幕一区二区三区| 国产精品国产精品国产专区不片| 亚洲精品日韩专区silk| 麻豆国产精品官网| 色哟哟国产精品免费观看| 51精品秘密在线观看| 亚洲精品一区二区三区影院| 中文字幕一区av| 日本美女一区二区三区视频| 国产91精品一区二区麻豆亚洲| 欧美日韩精品一二三区| 久久亚洲一区二区三区四区| 一区二区三区.www| 中文字幕不卡的av| 久久99深爱久久99精品| 欧美绝品在线观看成人午夜影视| 1024成人网|