99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網(wǎng)頁版入口 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品一级片| 久久精品免费观看| 91精品黄色片免费大全| 成人性生交大片免费看视频在线 | 91网站最新地址| 日韩av不卡一区二区| 91精品欧美一区二区三区综合在| 日韩专区一卡二卡| 中文字幕亚洲不卡| 国产欧美一区二区三区在线看蜜臀| 欧美日韩黄色影视| 色综合久久久久综合99| 成人av资源下载| k8久久久一区二区三区 | 日本欧美加勒比视频| 亚洲一区二区3| 亚洲成a人片综合在线| 亚洲精品水蜜桃| 亚洲狠狠丁香婷婷综合久久久| √…a在线天堂一区| 亚洲人被黑人高潮完整版| 亚洲美女在线一区| 玉足女爽爽91| 日韩精品亚洲一区| 韩国一区二区在线观看| 国产麻豆9l精品三级站| 成人午夜电影网站| 一本一本大道香蕉久在线精品| 91视频国产资源| 3751色影院一区二区三区| 日韩一区国产二区欧美三区| 久久久精品国产免费观看同学| 国产精品国产三级国产aⅴ入口 | 国产毛片精品视频| 国产成都精品91一区二区三| 成人激情免费网站| 欧美视频一区二区三区四区| 91精品国产日韩91久久久久久| 日韩欧美你懂的| 一区二区中文字幕在线| 日韩高清不卡一区二区三区| 国产成人精品亚洲777人妖| 91精彩视频在线| 欧美videofree性高清杂交| 久久精品一区八戒影视| 婷婷国产v国产偷v亚洲高清| 国产成人精品亚洲午夜麻豆| 欧美日韩久久久久久| 久久精品在线观看| 亚洲在线免费播放| 九九九精品视频| 91在线视频播放地址| 精品国产一区二区三区久久久蜜月| 亚洲国产精品传媒在线观看| 图片区小说区国产精品视频| 成人综合在线网站| 欧美一区二区三区爱爱| 亚洲欧美日韩中文字幕一区二区三区 | 国产在线播精品第三| 91亚洲国产成人精品一区二区三| 7777精品伊人久久久大香线蕉的| 中文字幕精品综合| 青青草国产成人av片免费| 91色婷婷久久久久合中文| 精品精品欲导航| 婷婷开心久久网| 91九色最新地址| 中文字幕中文字幕一区二区| 精品一二三四区| 欧美精品三级日韩久久| 亚洲一区精品在线| 91香蕉视频在线| 国产精品久久久久久久浪潮网站| 激情av综合网| 精品区一区二区| 久久99国产精品久久99果冻传媒| 欧美人牲a欧美精品| 亚洲在线视频免费观看| 成人午夜视频在线| 日韩午夜激情电影| 日本不卡视频一二三区| 欧美日韩中文字幕一区二区| 一区二区三区在线看| 99riav一区二区三区| 亚洲国产精品成人综合| 国产精品一区二区无线| 久久精品视频一区二区| 国产乱码精品一品二品| 久久久99精品久久| 成人午夜激情视频| 国产精品家庭影院| 99re热这里只有精品视频| 亚洲精品免费一二三区| 91成人国产精品| 亚洲电影一区二区三区| 欧美人xxxx| 久久精品国产澳门| 26uuu亚洲| 播五月开心婷婷综合| 综合久久国产九一剧情麻豆| 色婷婷精品久久二区二区蜜臂av | 亚洲欧美日韩人成在线播放| 在线观看精品一区| 日韩精品一级二级| 久久一区二区视频| av成人免费在线| 亚洲v精品v日韩v欧美v专区| 日韩欧美一区二区三区在线| 美女视频免费一区| 国产日韩欧美在线一区| 99re成人在线| 日韩黄色在线观看| 欧美国产精品劲爆| 欧美又粗又大又爽| 久久国产精品第一页| 中文字幕不卡在线播放| 精品视频全国免费看| 国产乱子伦一区二区三区国色天香| 国产精品久久777777| 欧美丰满少妇xxxxx高潮对白| 久久精品国产77777蜜臀| 亚洲欧美综合在线精品| 日韩视频一区二区三区| 大胆欧美人体老妇| 日韩电影在线免费观看| 国产欧美精品区一区二区三区| 在线亚洲欧美专区二区| 免费成人性网站| 一区二区三区中文字幕在线观看| 精品国产乱码久久久久久牛牛| 99久久久国产精品| 韩国精品一区二区| 亚洲国产成人porn| 国产精品国模大尺度视频| 日韩欧美国产一区在线观看| 色哟哟精品一区| 国产黄人亚洲片| 黑人精品欧美一区二区蜜桃| 日韩精品国产精品| 亚洲精品一二三四区| 国产欧美日韩三区| 欧美videos中文字幕| 在线精品视频免费播放| 成人免费视频一区| 国产精品一区二区黑丝| 日韩制服丝袜先锋影音| 亚洲人被黑人高潮完整版| 国产亚洲欧洲一区高清在线观看| 欧美一区二区三区免费大片| 欧美色区777第一页| 一本一道久久a久久精品| 成人av在线一区二区三区| 国产精品538一区二区在线| 久久成人免费日本黄色| 婷婷六月综合亚洲| 亚洲成a人v欧美综合天堂下载| 日韩一区中文字幕| 国产三级一区二区三区| 精品国产精品一区二区夜夜嗨| 欧美一区二区三区在线看| 欧美天堂一区二区三区| 欧美亚洲高清一区二区三区不卡| 91美女在线观看| 成人福利视频网站| 99在线热播精品免费| 色综合视频在线观看| 91亚洲精品久久久蜜桃网站 | 日韩主播视频在线| 亚洲mv在线观看| 午夜影院在线观看欧美| 丝袜脚交一区二区| 欧美96一区二区免费视频| 麻豆国产91在线播放| 国产一区在线观看麻豆| 国产美女娇喘av呻吟久久| 床上的激情91.| 91浏览器在线视频| 欧美精品粉嫩高潮一区二区| 91精品国产综合久久精品app| 欧美日韩中文另类| 日韩欧美色综合网站| 欧美激情综合五月色丁香| 亚洲私人黄色宅男| 日韩高清不卡一区二区三区| 久久99精品久久久久| 国产99久久久久久免费看农村| 粉嫩13p一区二区三区| 91久久人澡人人添人人爽欧美| 欧美精品在线观看一区二区| 日韩欧美一级精品久久| 国产欧美日韩在线视频| 亚洲精品中文在线观看| 老司机免费视频一区二区三区| 国产精品1区二区.| 欧美在线高清视频| 欧美精品一区二区在线观看| 综合自拍亚洲综合图不卡区| 天天操天天色综合| 国产精品1区2区3区| 精品视频一区二区不卡|