99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:二維碼生成器:更高效的工作方式
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品国产不卡一区二区三区| 国产剧情一区二区| 伊人色综合久久天天人手人婷| 国产精品福利电影一区二区三区四区| 国产精品丝袜黑色高跟| 日韩激情av在线| 欧美三电影在线| 91黄色激情网站| 国产午夜精品一区二区三区嫩草| 日韩精品电影一区亚洲| 色哟哟在线观看一区二区三区| 国产精品视频一二| 不卡一卡二卡三乱码免费网站| 国产亚洲欧美日韩在线一区| 免费观看日韩av| 国产成人综合在线观看| 久久久影院官网| 丝袜国产日韩另类美女| 日韩一区二区三区免费看| 午夜精品爽啪视频| 久久一留热品黄| 97久久久精品综合88久久| 亚洲精品福利视频网站| 色八戒一区二区三区| 日韩福利电影在线观看| 久久久久久久综合| 777奇米四色成人影色区| 激情五月婷婷综合| 视频一区视频二区在线观看| 久久精品免费在线观看| 欧美性色欧美a在线播放| 精品亚洲成av人在线观看| 亚洲午夜影视影院在线观看| 精品国产伦一区二区三区观看方式| 东方欧美亚洲色图在线| 青青青伊人色综合久久| 亚洲自拍都市欧美小说| 欧美在线免费观看视频| 久久精品国产亚洲a| 亚洲永久精品国产| 久久精品夜夜夜夜久久| 欧美精选在线播放| a级精品国产片在线观看| 天天综合色天天综合色h| 国产区在线观看成人精品| 精品一区精品二区高清| 亚洲成a人片在线观看中文| 精品国产乱码久久久久久老虎 | 丁香天五香天堂综合| 蜜桃av噜噜一区| 蜜桃视频在线观看一区二区| 亚洲卡通欧美制服中文| 亚洲视频一区在线| 一二三区精品福利视频| 亚洲另类在线一区| 亚洲欧美电影一区二区| 亚洲一区二区欧美激情| 亚洲成人动漫av| 日本中文一区二区三区| 国产精品久久久久一区二区三区| 欧美一区二区三级| 欧美人成免费网站| 欧美日韩成人综合| 九九热在线视频观看这里只有精品| 日韩电影一二三区| 国产自产v一区二区三区c| 亚洲另类在线一区| 欧美成人综合网站| 中文字幕不卡三区| 亚洲午夜私人影院| 国产高清亚洲一区| 色呦呦国产精品| 日韩精品一区二区三区在线观看| 91精品国产综合久久婷婷香蕉 | 久久久另类综合| 国产精品乱码久久久久久| 欧美韩国一区二区| 亚洲h在线观看| 成人激情午夜影院| 久久亚洲精品小早川怜子| 亚洲乱码精品一二三四区日韩在线| 婷婷综合久久一区二区三区| 成人午夜在线视频| 精品毛片乱码1区2区3区| 一区在线观看免费| 国产精品综合一区二区三区| 亚洲视频免费看| av一本久道久久综合久久鬼色| 538prom精品视频线放| 亚洲精品国产视频| 欧美午夜免费电影| 亚洲一区二区三区视频在线| 99久久精品国产一区| 中文字幕av一区二区三区高| 精品午夜久久福利影院| 26uuu国产电影一区二区| 极品少妇xxxx精品少妇| 不卡大黄网站免费看| 99热精品国产| 一区二区成人在线| 日韩欧美精品在线| 国产乱子轮精品视频| 国产天堂亚洲国产碰碰| 色综合天天综合网天天看片 | 国产欧美一区在线| 亚洲欧洲一区二区三区| 一本色道久久综合亚洲91| 七七婷婷婷婷精品国产| 精品国一区二区三区| 自拍偷拍亚洲综合| 欧美一区二区三区喷汁尤物| 久国产精品韩国三级视频| 成人欧美一区二区三区白人| 色欧美88888久久久久久影院| 日韩一级大片在线观看| 国产成人免费在线视频| 亚洲色图制服诱惑| 26uuu色噜噜精品一区| 欧美日本韩国一区二区三区视频| 国产精品一品二品| 日本不卡一区二区三区| 国产午夜精品福利| 国产999精品久久久久久绿帽| 日韩理论片在线| 欧美综合一区二区| 日韩av电影免费观看高清完整版 | 久久久久国产精品麻豆ai换脸| 色综合久久中文综合久久97| 中文一区一区三区高中清不卡| 欧美二区三区的天堂| 欧美色爱综合网| 欧洲激情一区二区| 色综合网站在线| 奇米精品一区二区三区在线观看| 亚洲丶国产丶欧美一区二区三区| 国产精品中文字幕日韩精品| 亚洲精品一区二区在线观看| 日韩欧美综合在线| 国产无一区二区| 亚洲色欲色欲www| 日日夜夜精品视频免费| 青青草视频一区| 国产精品一区二区在线观看网站| 午夜av一区二区| caoporm超碰国产精品| 国产一区二区三区在线观看免费视频 | 99精品视频一区二区| 在线看一区二区| 欧美一区二区三区在线| 亚洲欧洲美洲综合色网| av在线不卡电影| 精品国产电影一区二区| 综合久久久久久| 日本成人在线不卡视频| 99麻豆久久久国产精品免费| 日韩一级大片在线观看| 午夜精品视频在线观看| 亚洲欧美欧美一区二区三区| 韩国av一区二区三区四区| 91国内精品野花午夜精品| 久久精品一区蜜桃臀影院| 日韩va亚洲va欧美va久久| 91浏览器在线视频| 国产精品久久久一区麻豆最新章节| 日日夜夜免费精品| 欧美日本在线看| 天天综合色天天综合色h| 亚洲图片欧美色图| 美女视频黄频大全不卡视频在线播放| 成人免费毛片a| 国产精品丝袜黑色高跟| 91视频一区二区三区| 亚洲精品欧美专区| 欧美精品1区2区| 尤物视频一区二区| 欧美一区二区视频在线观看2020| 日韩综合小视频| 久久丝袜美腿综合| 国产精品99久久久久久久vr| www.亚洲色图.com| 日本欧美一区二区三区乱码| 国产亚洲成年网址在线观看| 91色乱码一区二区三区| 午夜亚洲国产au精品一区二区| 久久久蜜桃精品| 一区二区三区四区蜜桃| 成人看片黄a免费看在线| 亚洲国产高清不卡| 色综合久久中文字幕| 成人一区二区三区| 日日摸夜夜添夜夜添国产精品| 日本一区二区三区在线不卡| 欧美精品第1页| 亚洲精品亚洲人成人网 | 日韩精品一区二区三区视频播放| 97国产精品videossex| 国产精品理论片在线观看| 欧美一激情一区二区三区| 国产精品毛片久久久久久| 日本va欧美va瓶|